Crater is a geologic structure in solid bodies(including the terrestrial planets, moons, and asteroids) formed by hyperspeed impact, and the impact process is extremely important to the formation and evolution of thes...Crater is a geologic structure in solid bodies(including the terrestrial planets, moons, and asteroids) formed by hyperspeed impact, and the impact process is extremely important to the formation and evolution of these celestial bodies. This paper presents a review of the studies on remote sensing observation, formation mechanism, and scientific application of craters. On the remote sensing study of craters, the topographic characteristics of the micro-craters, simple craters, complex craters, and impact basins are described,the related parameters in the morphological studies of craters are subsequently introduced, and the distribution characteristics of the minerals and rock types during the impact excavation process are analyzed,the methods of crater identification and the crater databases on the Moon, Mars, Ceres, and Vesta are summarized. On the studies of crater formation mechanism, the general formation process of the craters is firstly described, and then the most frequently used methods are presented, and the importance of the empirical equations is also elucidated. On the scientific applications of the craters, the principle and currently utilization of the planetary surface dating method with crater size-frequency distribution are firstly presented, and the applications, including modeling the lunar regolith formation and thickness derivation of both the regolith and basalt, are reviewed. Finally, the future prospects of the formation mechanism study of the craters are discussed.展开更多
研究表明大地震之前由于地表温度的变化会引起长波辐射OLR(Outgoing Longwave Radiation)数据异常,但目前缺乏有效的技术来提取异常。我们提出了一种基于随机传感器和鞅理论的异常数据挖掘算法ADRM (Abnormality Detection based on Ran...研究表明大地震之前由于地表温度的变化会引起长波辐射OLR(Outgoing Longwave Radiation)数据异常,但目前缺乏有效的技术来提取异常。我们提出了一种基于随机传感器和鞅理论的异常数据挖掘算法ADRM (Abnormality Detection based on Randomized Transducer and Power Martingales),经过实验对比能有效挖掘异常。本数据集记录了尼泊尔地区2009-2018年10年间的NOAA卫星的OLR数据和经过异常数据挖掘后的相应数据序列。数据集在地域上,以尼泊尔地震震中为中心的周边地域划分为同样经纬度2.5°×2.5°为单位的25个网格;时间上,定义每个年度是从上一年的9月28日到下一年的9月28日,共计366天,2009-2018年10年的数据。数据集存储为1个.xls文件,数据量为3.92 MB。基于该数据集的研究成果分别发表在《地球信息科学学报》(2018年20卷8期)和《IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing》(2018年11卷8期)。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41972321, 41941003)。
文摘Crater is a geologic structure in solid bodies(including the terrestrial planets, moons, and asteroids) formed by hyperspeed impact, and the impact process is extremely important to the formation and evolution of these celestial bodies. This paper presents a review of the studies on remote sensing observation, formation mechanism, and scientific application of craters. On the remote sensing study of craters, the topographic characteristics of the micro-craters, simple craters, complex craters, and impact basins are described,the related parameters in the morphological studies of craters are subsequently introduced, and the distribution characteristics of the minerals and rock types during the impact excavation process are analyzed,the methods of crater identification and the crater databases on the Moon, Mars, Ceres, and Vesta are summarized. On the studies of crater formation mechanism, the general formation process of the craters is firstly described, and then the most frequently used methods are presented, and the importance of the empirical equations is also elucidated. On the scientific applications of the craters, the principle and currently utilization of the planetary surface dating method with crater size-frequency distribution are firstly presented, and the applications, including modeling the lunar regolith formation and thickness derivation of both the regolith and basalt, are reviewed. Finally, the future prospects of the formation mechanism study of the craters are discussed.
文摘研究表明大地震之前由于地表温度的变化会引起长波辐射OLR(Outgoing Longwave Radiation)数据异常,但目前缺乏有效的技术来提取异常。我们提出了一种基于随机传感器和鞅理论的异常数据挖掘算法ADRM (Abnormality Detection based on Randomized Transducer and Power Martingales),经过实验对比能有效挖掘异常。本数据集记录了尼泊尔地区2009-2018年10年间的NOAA卫星的OLR数据和经过异常数据挖掘后的相应数据序列。数据集在地域上,以尼泊尔地震震中为中心的周边地域划分为同样经纬度2.5°×2.5°为单位的25个网格;时间上,定义每个年度是从上一年的9月28日到下一年的9月28日,共计366天,2009-2018年10年的数据。数据集存储为1个.xls文件,数据量为3.92 MB。基于该数据集的研究成果分别发表在《地球信息科学学报》(2018年20卷8期)和《IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing》(2018年11卷8期)。