The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th...Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a ro...This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.展开更多
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r...Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.展开更多
A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u...A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).展开更多
In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly desi...In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.展开更多
Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control sy...Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.展开更多
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so...Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.展开更多
In order to reduce the system errors of dead reckoning and improve the localization accu- racy, a new model for systematic error of mobile robot was defined and a UMBmark-based method for calibrating and compensating ...In order to reduce the system errors of dead reckoning and improve the localization accu- racy, a new model for systematic error of mobile robot was defined and a UMBmark-based method for calibrating and compensating systematic error was presented. Three dominant reasons causing systematic errors were considered: imprecise average wheel diameter, uncertainty about the effec- tive wheelbase and unequal wheel' s diameter. The new model for systematic errors is considering the coupling effect of the three factors during the localization of mobile robot. Three coefficients to calibrate average wheel diameter, effective wheelbase, left and right wheels' diameter were ob- tained. Then these three coefficients were used to make improvements on robot kinematic equations. The experiments on the dual-wheel drive mobile robot DaNI show that the presented method has achieveda significant improvement in the location accuracy compared with the UMBmark calibration.展开更多
Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance ...Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.展开更多
This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o...This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.展开更多
A robust unified controller was proposed for wheeled mobile robots that do not satisfy the ideal rolling without slipping constraint.Practical trajectory tracking and posture stabilization were achieved in a unified f...A robust unified controller was proposed for wheeled mobile robots that do not satisfy the ideal rolling without slipping constraint.Practical trajectory tracking and posture stabilization were achieved in a unified framework.The design procedure was based on the transverse function method and Lyapunov redesign technique.The Lie group was also introduced in the design.The left-invariance property of the nominal model was firstly explored with respect to the standard group operation of the Lie group SE(2).Then,a bounded transverse function was constructed,by which a corresponding smooth embedded submanifold was defined.With the aid of the group operation,a smooth control law was designed,which fulfills practical tracking/stabilization of the nominal system.An additional component was finally constructed to robustify the nominal control law with respect to the slipping disturbance by using the Lyapunov redesign technique.The design procedure can be easily extended to the robot system suffered from general unknown but bounded disturbances.Simulations were provided to demonstrate the effectiveness of the robust unified controller.展开更多
To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning i...To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning is applied by the heuristic searching method in which Reeds and Shepp’s shortest paths are chosen as heuristic functions. It has performed well in simulation of mobile robots moving in a cluttered environment.展开更多
In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any ord...In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods.展开更多
This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is d...This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.展开更多
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
The small-tracked mobile robots( STMRs) are small,portable and concealed,and they are widely used in scouting,investigation,rescue and assistance. In this paper,a mechanical model is established based on the multi-b...The small-tracked mobile robots( STMRs) are small,portable and concealed,and they are widely used in scouting,investigation,rescue and assistance. In this paper,a mechanical model is established based on the multi-body dynamic software RecurD yn,and a control system is simulated through Simulink,including its kinematics model,speed controller,motors' model. Associating the mechanical and control model,the cosimulation model is established for STMRs. The co-simulation approach is applied to optimize the motor parameters. A series of experiments are conducted to examine the accuracy of the virtual prototype,and the results demonstrate that the STMR virtual prototype can exactly illustrate the dynamic performance of the physical one.The co-simulation of mechanical model and control model is applied in forecasting and debugging critical parameters,also it provides guidance in defining motor's peak current.展开更多
A kinematics and fuzzy logic combined formation controller was proposed for leader-follower based formation control using backstepping method in order to accommodate the dynamics of the robot.The kinematics controller...A kinematics and fuzzy logic combined formation controller was proposed for leader-follower based formation control using backstepping method in order to accommodate the dynamics of the robot.The kinematics controller generates desired linear and angular velocities for follower robots,which make the configuration of follower robots coverage to the desired.The fuzzy logic controller takes dynamics of the leader and followers into consideration,which is built upon Mamdani fuzzy model.The force and torque acting on robots are described as linguistic variables and also 25 if-then rules are designed.In addition,the fuzzy logic controller adopts the Centroid of Area method as defuzzification strategy and makes robots’actual velocities converge to the expected which is generated by the kinematics controller.The innovation of the kinematics and fuzzy logic combined formation controller presented in the paper is that the perfect velocity tracking assumption is removed and realtime performance of the system is improved.Compared with traditional torque-computed controller,the velocity error convergence time in case of the proposed method is shorter than traditional torque-computed controller.The simulation results validate that the proposed controller can drive robot members to form the desired formation and formation tracking errors which can coverage to a neighborhood of the origin.Additionally,the simulations also show that the proposed method has better velocity convergence performance than traditional torque-computed method.展开更多
Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinemat...Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer pereeptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.展开更多
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700402).
文摘Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
文摘This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.
基金The authors extend their appreciation to the Deanship of Scientific Research at Shaqra University for funding this research work through the Project Number(SU-ANN-2023016).
文摘Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.
基金supported by the National Natural Science Foundation of China(616732546157310061573101)
文摘A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI).
基金supported by the National Natural Science Foundation of China(61573184)the Specialized Research Fund for the Doctoral Program of Higher Education(20133218110013)+1 种基金the Six Talents Peak Project of Jainism Province(2012-XRAY-010)the Fundamental Research Funds for theCentral Universities(NE2016101)
文摘In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.
基金supported by National Natural Science Foundation of China (Grant No. 61075081)State Key Laboratory of Robotics Technique and System Foundation,Harbin Institute of Technology,China(Grant No. SKIRS200802A02)
文摘Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR.
基金supported by National Key Basic Research and Development Program of China (973 Program,Grant No. 2009CB320602)National Natural Science Foundation of China (Grant Nos. 60834004,61025018)+2 种基金National Science and Technology Major Project of China(Grant No. 2011ZX02504-008)Fundamental Research Funds for the Central Universities of China (Grant No. ZZ1222)Key Laboratory of Advanced Engineering Surveying of NASMG of China (Grant No.TJES1106)
文摘Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
基金Supported by Basic Research Foundation of Beijing Institute of Technology(20130242015)
文摘In order to reduce the system errors of dead reckoning and improve the localization accu- racy, a new model for systematic error of mobile robot was defined and a UMBmark-based method for calibrating and compensating systematic error was presented. Three dominant reasons causing systematic errors were considered: imprecise average wheel diameter, uncertainty about the effec- tive wheelbase and unequal wheel' s diameter. The new model for systematic errors is considering the coupling effect of the three factors during the localization of mobile robot. Three coefficients to calibrate average wheel diameter, effective wheelbase, left and right wheels' diameter were ob- tained. Then these three coefficients were used to make improvements on robot kinematic equations. The experiments on the dual-wheel drive mobile robot DaNI show that the presented method has achieveda significant improvement in the location accuracy compared with the UMBmark calibration.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NIPA-2012-C1090-1221-0010)TheMKE,Korea,under the Human Resources Development Programfor Convergence Robot Specialists support programsu-pervised by the NIPA(NIPA-2012-H1502-12-1002)Basic Science Research Program through the NRF funded by the MEST(2011-0025980)and MEST(2012-0005487)
文摘Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.
文摘This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.
基金Project (60234030) supported by the National Natural Science Foundation of ChinaProject supported by the TRAPOYT of Ministry of Education of China
文摘A robust unified controller was proposed for wheeled mobile robots that do not satisfy the ideal rolling without slipping constraint.Practical trajectory tracking and posture stabilization were achieved in a unified framework.The design procedure was based on the transverse function method and Lyapunov redesign technique.The Lie group was also introduced in the design.The left-invariance property of the nominal model was firstly explored with respect to the standard group operation of the Lie group SE(2).Then,a bounded transverse function was constructed,by which a corresponding smooth embedded submanifold was defined.With the aid of the group operation,a smooth control law was designed,which fulfills practical tracking/stabilization of the nominal system.An additional component was finally constructed to robustify the nominal control law with respect to the slipping disturbance by using the Lyapunov redesign technique.The design procedure can be easily extended to the robot system suffered from general unknown but bounded disturbances.Simulations were provided to demonstrate the effectiveness of the robust unified controller.
文摘To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning is applied by the heuristic searching method in which Reeds and Shepp’s shortest paths are chosen as heuristic functions. It has performed well in simulation of mobile robots moving in a cluttered environment.
文摘In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods.
基金Project (No.2002CB312200) supported by the National Basic Research Program (973) of China
文摘This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.
基金Supported by Basic Research Foundation of Beijing Institute of Technology(20130242015)
文摘The small-tracked mobile robots( STMRs) are small,portable and concealed,and they are widely used in scouting,investigation,rescue and assistance. In this paper,a mechanical model is established based on the multi-body dynamic software RecurD yn,and a control system is simulated through Simulink,including its kinematics model,speed controller,motors' model. Associating the mechanical and control model,the cosimulation model is established for STMRs. The co-simulation approach is applied to optimize the motor parameters. A series of experiments are conducted to examine the accuracy of the virtual prototype,and the results demonstrate that the STMR virtual prototype can exactly illustrate the dynamic performance of the physical one.The co-simulation of mechanical model and control model is applied in forecasting and debugging critical parameters,also it provides guidance in defining motor's peak current.
基金Sponsored by the National Nature Science Foundation of China(Grant No.61105088)
文摘A kinematics and fuzzy logic combined formation controller was proposed for leader-follower based formation control using backstepping method in order to accommodate the dynamics of the robot.The kinematics controller generates desired linear and angular velocities for follower robots,which make the configuration of follower robots coverage to the desired.The fuzzy logic controller takes dynamics of the leader and followers into consideration,which is built upon Mamdani fuzzy model.The force and torque acting on robots are described as linguistic variables and also 25 if-then rules are designed.In addition,the fuzzy logic controller adopts the Centroid of Area method as defuzzification strategy and makes robots’actual velocities converge to the expected which is generated by the kinematics controller.The innovation of the kinematics and fuzzy logic combined formation controller presented in the paper is that the perfect velocity tracking assumption is removed and realtime performance of the system is improved.Compared with traditional torque-computed controller,the velocity error convergence time in case of the proposed method is shorter than traditional torque-computed controller.The simulation results validate that the proposed controller can drive robot members to form the desired formation and formation tracking errors which can coverage to a neighborhood of the origin.Additionally,the simulations also show that the proposed method has better velocity convergence performance than traditional torque-computed method.
基金Project (60234030) supported by the National Natural Science Foundation of China
文摘Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer pereeptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.