In order to analyze the spatial maneuverability of the remotely operated underwater vehicle(ROV),the 6-DOF motion mathematic model of the ROV was founded.Hydrodynamics were analyzed by using the Taylor series.The thru...In order to analyze the spatial maneuverability of the remotely operated underwater vehicle(ROV),the 6-DOF motion mathematic model of the ROV was founded.Hydrodynamics were analyzed by using the Taylor series.The thrusters on the ROV were discussed.This paper considers three cases of motion simulation:vertical motion,rotational motion and Z-shape motion.A series of simulation experiments showed that the 6-DOF motion mathematic model was correct and reliable,and also fit with the scene simulation.展开更多
This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong...This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions.展开更多
The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from Universi...The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed.展开更多
In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range...In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV’s detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.展开更多
基金Supported by Major Projects of Science Research of Ministry of Education(311034)
文摘In order to analyze the spatial maneuverability of the remotely operated underwater vehicle(ROV),the 6-DOF motion mathematic model of the ROV was founded.Hydrodynamics were analyzed by using the Taylor series.The thrusters on the ROV were discussed.This paper considers three cases of motion simulation:vertical motion,rotational motion and Z-shape motion.A series of simulation experiments showed that the 6-DOF motion mathematic model was correct and reliable,and also fit with the scene simulation.
基金financially supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2008AA092301)
文摘This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions.
基金support to the University of South Florida(Grants No.0014-96-1-5013 and No.0014-97-1-0006)cooperation between Ocean University of China and University of South Florida.
文摘The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed.
基金supported by the National Natural Science Foundation of China(No.60178017)
文摘In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV’s detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.