期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Experimental study on the variation of optical remote sensing imaging characteristics of internal solitary waves with wind speed
1
作者 Zhe CHANG Lina SUN +4 位作者 Tengfei LIU Meng ZHANG Keda LIANG Junmin MENG Jing WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期408-420,共13页
Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by opt... Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging. 展开更多
关键词 internal solitary wave(ISW) optical remote sensing wind speed characteristics of ISWs bands
下载PDF
Influences of Atmospheric Turbulence on Image Resolution of Airborne and Space-Borne Optical Remote Sensing System 被引量:2
2
作者 张晓芳 俞信 阎吉祥 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期457-461,共5页
A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, s... A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields. 展开更多
关键词 atmospheric turbulence coherence length arrival angle-method airborne or space-borne optical remote sensing system image resolution
下载PDF
An Intelligent Detection Method for Optical Remote Sensing Images Based on Improved YOLOv7
3
作者 Chao Dong Xiangkui Jiang 《Computers, Materials & Continua》 SCIE EI 2023年第12期3015-3036,共22页
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model... To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements. 展开更多
关键词 Object detection optical remote sensing images YOLOv7-tiny real-time detection
下载PDF
Optical remote sensing image characteristics of large amplitude convex mode-2 internal solitary waves:an experimental study
4
作者 Zhixin Li Meng Zhang +1 位作者 Keda Liang Jing Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第6期16-23,共8页
A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing s... A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing simulation platform.The corresponding wave parameters of large-amplitude convex mode-2 ISWs under smooth surfaces are investigated along with the optical remote sensing characteristic parameters.The mode-2 ISWs in the experimentally obtained optical remote sensing image are produced by their overall modulation effect on the water surface,and the extreme points of the gray value of the profile curve of bright-dark stripes appear at the same location as the real optical remote sensing image.The present data extend to a larger range than previous studies,and for the characteristics of large amplitude convex mode-2 ISWs,the experimental results show a second-order dependence of wavelength on amplitude.There is a close relationship between optical remote sensing characteristic parameters and wave parameters of mode-2 ISWs,in which there is a positive linear relationship between the bright-dark spacing and wavelength and a nonlinear relationship with the amplitude,especially when the amplitude is very large,there is a significant increase in bright-dark spacing. 展开更多
关键词 mode-2 internal solitary waves optical remote sensing characteristic parameter wave characteristic
下载PDF
PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform 被引量:12
5
作者 LIU Meijie DAI Yongshou +3 位作者 ZHANG Jie ZHANG Xi MENG Junmin XIE Qinchuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第3期59-67,共9页
Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has b... Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification. 展开更多
关键词 sea ice optical remote sensing image SAR remote sensing image HIS transform wavelet transform PCA method
下载PDF
Mapping the bathymetry of shallow coastal water using singleframe fine-resolution optical remote sensing imagery 被引量:7
6
作者 LI Jiran ZHANG Huaguo +2 位作者 HOU Pengfei FU Bin ZHENG Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第1期60-66,共7页
This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water dep... This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-flame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water. 展开更多
关键词 BATHYMETRY optical remote sensing image NEARSHORE QUICKBIRD
下载PDF
Optical Remote-sensing Monitoring and Forecasting of Atmospheric Pollution in Huaibei Area, China 被引量:1
7
作者 Su-wen Li Pin-hua Xie +2 位作者 En-hua Jiang Yong Zhang Hai-feng Dai 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第6期739-742,I0004,共5页
Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology... Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology has been applied to monitor regional average concen- trations and inventory of nitrogen dioxide, sulfur dioxide and ozone. DOAS system was set up and applied to monitor the main air pollutants in Huaibei area. Monitoring data were obtained from 7 to 28 August, 2011. Monitoring results show measurements in controlling pollution are effective, and emissions of pollutants are up to the national standard in Huaibei area. Prediction model was also created to track changing trend of pollutions. These will provide raw data support for effective evaluation of environmental quality in Huaibei area. 展开更多
关键词 optical remote sensing Atmospheric pollution Huaibei area MONITORING Forecasting
下载PDF
Performance evaluation of operational atmospheric correction algorithms over the East China Seas
8
作者 HE Shuangyan HE Mingxia FISCHER Jurgen 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第1期1-22,共22页
To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction(AC) algorithms(ESA MEGS 7.4.1 and NASA Sea DAS 6.1) ... To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction(AC) algorithms(ESA MEGS 7.4.1 and NASA Sea DAS 6.1) were evaluated over the East China Seas(ECS) using MERIS data. The spectral remote sensing reflectance R_(rs)(λ), aerosol optical thickness(AOT), and ?ngstr?m exponent(α) retrieved using the two algorithms were validated using in situ measurements obtained between May 2002 and October 2009. Match-ups of R_(rs), AOT, and α between the in situ and MERIS data were obtained through strict exclusion criteria. Statistical analysis of R_(rs)(λ) showed a mean percentage difference(MPD) of 9%–13% in the 490–560 nm spectral range, and significant overestimation was observed at 413 nm(MPD>72%). The AOTs were overestimated(MPD>32%), and although the ESA algorithm outperformed the NASA algorithm in the blue-green bands, the situation was reversed in the red-near-infrared bands. The value of α was obviously underestimated by the ESA algorithm(MPD=41%) but not by the NASA algorithm(MPD=35%). To clarify why the NASA algorithm performed better in the retrieval of α, scatter plots of the α single scattering albedo(SSA) density were prepared. These α-SSA density scatter plots showed that the applicability of the aerosol models used by the NASA algorithm over the ECS is better than that used by the ESA algorithm, although neither aerosol model is suitable for the ECS region. The results of this study provide a reference to both data users and data agencies regarding the use of operational data products and the investigation into the improvement of current AC schemes over the ECS. 展开更多
关键词 validation remote sensing reflectance aerosol optical thickness ocean color atmospheric correction remote sensing
下载PDF
China’s high-resolution optical remote sensing satellites and their mapping applications 被引量:20
9
作者 Deren Li Mi Wang Jie Jiang 《Geo-Spatial Information Science》 SCIE CSCD 2021年第1期85-94,I0011,共11页
Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the govern... Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China. 展开更多
关键词 High-resolution optical remote sensing satellite satellite constellation mapping mode global mapping
原文传递
Progress in monitoring high-temperature damage to rice through satellite and ground-based optical remote sensing 被引量:11
10
作者 ZHANG JiaHua YAO FengMei +4 位作者 LI BingBai YAN Hao HOU YingYu CHENG GaoFeng Vijendra BOKEN 《Science China Earth Sciences》 SCIE EI CAS 2011年第12期1801-1811,共11页
The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects... The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects food security in this region and in the whole of China. It is important to monitor and assess crop HTD using satellite remote sensing information. This paper reviews the recent development of monitoring rice HTD using optical remote sensing information. It includes the use of optical remote sensing information to obtain the regional spatial distribution of high temperatures, mixed-surface temperature retrieval for rice fields based on mixed decomposition information, the development of field and thermal infrared testing and modeling, and the satellite/ground-based remote sensing coupled method for monitoring rice HTD. Finally, the prospects for monitoring crop HTD based on remote sensing information are summarized. 展开更多
关键词 satellite and ground-based optical remote sensing infrared remote sensing hyperspectral remote sensing RICE high- temperature damage
原文传递
Ship detection and classification from optical remote sensing images: A survey 被引量:9
11
作者 Bo LI Xiaoyang XIE +1 位作者 Xingxing WEI Wenting TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第3期145-163,共19页
Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing f... Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing filed. This article collects the methods of ship detection and classification for practically testing in optical remote sensing images, and provides their corresponding feature extraction strategies and statistical data. Basic feature extraction strategies and algorithms are analyzed associated with their performance and application in ship detection and classification.Furthermore, publicly available datasets that can be applied as the benchmarks to verify the effectiveness and the objectiveness of ship detection and classification methods are summarized in this paper. Based on the analysis, the remaining problems and future development trends are provided for ship detection and classification methods based on optical remote sensing images. 展开更多
关键词 optical remote sensing Satellite image Sea target detection Ship classification Ship detection
原文传递
A microscale optical implant for continuous in vivo monitoring of intraocular pressure 被引量:5
12
作者 Jeong Oen Lee Haeri Park +4 位作者 Juan Du Ashwin Balakrishna Oliver Chen David Sretavan Hyuck Choo 《Microsystems & Nanoengineering》 EI CSCD 2017年第1期11-19,共9页
Intraocular pressure(IOP)is a key clinical parameter in glaucoma management.However,despite the potential utility of daily measurements of IOP in the context of disease management,the necessary tools are currently lac... Intraocular pressure(IOP)is a key clinical parameter in glaucoma management.However,despite the potential utility of daily measurements of IOP in the context of disease management,the necessary tools are currently lacking,and IOP is typically measured only a few times a year.Here we report on a microscale implantable sensor that could provide convenient,accurate,ondemand IOP monitoring in the home environment.When excited by broadband near-infrared(NIR)light from a tungsten bulb,the sensor’s optical cavity reflects a pressure-dependent resonance signature that can be converted to IOP.NIR light is minimally absorbed by tissue and is not perceived visually.The sensor’s nanodot-enhanced cavity allows for a 3–5 cm readout distance with an average accuracy of 0.29 mm Hg over the range of 0–40 mm Hg.Sensors were mounted onto intraocular lenses or silicone haptics and secured inside the anterior chamber in New Zealand white rabbits.Implanted sensors provided continuous in vivo tracking of short-term transient IOP elevations and provided continuous measurements of IOP for up to 4.5 months. 展开更多
关键词 GLAUCOMA intraocular pressure(IOP) microscale sensor implant in vivo continuous monitoring remote optical readout near-infrared(NIR)broadband light minimally invasive
原文传递
Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O single crystals for remote optical thermometry 被引量:2
13
作者 Jun-Hua Wei Jian-Bin Luo +2 位作者 Jin-Feng Liao Wei-Tao Ou Dai-Bin Kuang 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期764-772,共9页
Zero-dimensional metal halide perovskites have captured intense research interest owing to their unique optoelectronic properties.Particularly,metal halides with the ns^(2) electronic configuration are of great intere... Zero-dimensional metal halide perovskites have captured intense research interest owing to their unique optoelectronic properties.Particularly,metal halides with the ns^(2) electronic configuration are of great interest owing to the high-temperature sensitivity of their photoluminescence,which could be applied to remote optical thermometry(ROT).Herein,all-inorganic and lead-free halide perovskite Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O single crystals(SCs)were prepared through the hydrothermal method and showed a strong temperature dependence of photoluminescence lifetime.Upon Te^(4+) doping,the nonemissive Cs_(2)InCl_(5)·H_(2)O SC exhibits a bright orange emission at 660 nm with a wide full width at half maximum of 180 nm.The strong phonon-exciton coupling promotes the formation of self-trapped excitons in the soft lattice of the zero-dimensional Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC.The Te^(4+) ions with the 5 s^(2) electronic configuration endow the Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC with a strong temperaturedependent photoluminescence lifetime.This SC reaches a maximum specific sensitivity of 0.062 K^(-1) at 320 K,thereby showing the potential advantages of indium-based metal halide perovskites in ROT applications. 展开更多
关键词 metal halide perovskite remote optical thermometry PHOTOLUMINESCENCE LEAD-FREE
原文传递
An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images 被引量:1
14
作者 Sihang Zhang Zhenfeng Shao +2 位作者 Xiao Huang Linze Bai Jiaming Wang 《Geo-Spatial Information Science》 SCIE EI CSCD 2021年第4期654-665,共12页
Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either ... Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either rely on rotated anchoring schemes or adding complex rotating ROI transfer layers,leading to increased computational demand and reduced detection speeds.In this study,we propose a novel internal-external optimized convolutional neural network for arbitrary orientated object detection in optical remote sensing images.For the internal opti-mization,we designed an anchor-based single-shot head detector that adopts the concept of coarse-to-fine detection for two-stage object detection networks.The refined rotating anchors are generated from the coarse detection head module and fed into the refining detection head module with a link of an embedded deformable convolutional layer.For the external optimiza-tion,we propose an IOU balanced loss that addresses the regression challenges related to arbitrary orientated bounding boxes.Experimental results on the DOTA and HRSC2016 bench-mark datasets show that our proposed method outperforms selected methods. 展开更多
关键词 Arbitrary orientated object detection optical remote sensing image single-shot deep learning
原文传递
Modified optical remote sensing algorithms for the Pearl River Estuary
15
作者 Man-Chung CHIM Jiayi PAN Wenfeng LAI 《Frontiers of Earth Science》 SCIE CAS CSCD 2015年第4期732-741,共10页
This study aims to develop new algorithms to retrieve sea surface parameters including concentrations of Chlorophyll a (Chl a) and Suspended Particulate Matter (SPM), and absorbance of Colored Dissolved Organic Ma... This study aims to develop new algorithms to retrieve sea surface parameters including concentrations of Chlorophyll a (Chl a) and Suspended Particulate Matter (SPM), and absorbance of Colored Dissolved Organic Matter (aCDOM) by incorporating the contribution of red bands to make them more adaptable to case 2 waters. Optical remote sensing algorithms have demonstrated efficient retrieval of Chl a, SPM, and aCDOM, yet they are not very accurate especially for coastal areas. It has also been found that the default algorithm has overestimated Chl a in the Pearl River Estuary, and shown poor correlation for CDOM absorbance. By incorporating the red band ratios into the algorithm, a correction effect has been shown, which improves the accuracy of quantifying the actual concentration. Modeling and data fitting of the algorithm have been done based on 61 data samples collected in the Pearl River estuary during a cruise from 3 to 11 May 2014. The study also attempts to modify the aerosol correction bands used in SeaDAS to prevent saturation of these bands. The modified algorithms showed an R-Square value of 0.7289 for Chl a fitting, and 0.7338 for CDOM fitting, and corrected overestimation of Chl a concentration in the Pearl River estuary. 展开更多
关键词 optical remote sensing algorithm Pearl River Estuary
原文传递
The decrease of salinity in lakes on the Tibetan Plateau between 2000 and 2019 based on remote sensing model inversions 被引量:1
16
作者 Chong Liu Liping Zhu +3 位作者 Junbo Wang Jianting Ju Qingfeng Ma Qiangqiang Kou 《International Journal of Digital Earth》 SCIE EI 2023年第1期2644-2659,共16页
Salinity is an essential factor of lake water environments and aquatic systems.It is also sensitive to climatic changes and human activities based on concentration variations of solved minerals.However,there are few c... Salinity is an essential factor of lake water environments and aquatic systems.It is also sensitive to climatic changes and human activities based on concentration variations of solved minerals.However,there are few consecutively temporal studies on lake salinity variations on the Tibetan Plateau because the harsh environmental conditions make it diffcult to carry out in-situ observations for several lakes.In this study.we constructed a remote sensing retrieval model for lake salinity based on 87 in-situ lake investigations;moreover,interannual lake salinity and associated variations from 152 lakes larger than 50 km2 were analyzed on the Tibetan Plateau.A significant decreasing trend in lake salinity was observed between 2000 and 2019(p<0.01).The spatial variation of lake salinity was negatively correlated with lake area changes,and the optical characteristics of salt mineral solutions were generally positively correlated with mineral concentration based on the absorption coefficients of ionic solutions.The decreasing trend of lake salinity was not directly affected by the.precipitation,but was,potentially dominated by the expanding lake water volume.This study improves the understanding of regional water environmental changes and management efficacy of water resources. 展开更多
关键词 optical remote sensing Tibetan Plateau LAKES climate change SALINITY
原文传递
A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas 被引量:8
17
作者 YU Fan ZHAO YingShi 《Science China Earth Sciences》 SCIE EI CAS 2011年第12期1955-1964,共10页
Active microwave and passive optical remote sensing data have demonstrated their respective advantages in inversion of surface soil moisture content. A new semi-empirical model is presented for soil moisture content r... Active microwave and passive optical remote sensing data have demonstrated their respective advantages in inversion of surface soil moisture content. A new semi-empirical model is presented for soil moisture content retrieval in vegetation-covered areas, using ENVISAT-ASAR and LANDSAT-TM data collaboratively. Derivation of the algorithm is based on simplification of the Michigan Microwave Canopy Scattering Model (MIMICS). In the model, the ground surface is divided into a canopy layer and a soil layer, and empirical relationships simulated among vegetation water mass We, the backscatter coefficient σpq1, the bidirectional scattering coefficient σpq2 and the extinction coefficient τp. The key input parameters of the semi-empirical model are reduced to only the leaf area index (LAI), which can be easily inverted by the optical model PROSAIL, allowing coupling of the microwave and optical models to be achieved. Also, vegetation RMS height (Svcg) is introduced to correct for the radar-shadow effect caused by over-laying vegetation. Analysis of the parameter sensitivity of the semi-empirical model showed that when the regional Leaf Area Index is small (LAI≤3), the model is more applicable. Soil moisture distribution in the study area was mapped using the semi-empirical model and field ground measurements used for model validation. This showed that, after correction of the radar-shadow effect, the average relative error (Er) between ground-measured and semi-empirical model-derived estimates of soil moisture decreased from 17.6% to 10.4%, while the RMS reduced from 0.055 to 0.031 g cm^-3. The accuracy of soil moisture estimates from the semi-empirical model is much better than for the MIMICS model (Er = 22.7%, RMS = 0.068 g cm^-3), showing that the semi-empirical model is efficient at obtaining regional surface soil moisture contents when LAI is small. 展开更多
关键词 microwave and optic remote sensing MIMICS PROSAIL soil moisture
原文传递
Determining oil slick thickness using hyperspectral remote sensing in the Bohai Sea of China 被引量:4
18
作者 Yingcheng Lu Qingjiu Tian +2 位作者 Xinyuan Wang Guang Zheng Xiang Li 《International Journal of Digital Earth》 SCIE EI 2013年第1期76-93,共18页
Determining oil slick thickness plays an important role in assessing oil spill volume and its environmental impacts on the ocean.In this study,we used a Hyperion image of an oil spill accident area and seawater and fr... Determining oil slick thickness plays an important role in assessing oil spill volume and its environmental impacts on the ocean.In this study,we used a Hyperion image of an oil spill accident area and seawater and fresh crude oil samples collected in the Bohai Sea of China.A well-controlled laboratory experiment was designed to simulate spectral responses to different oil slick thicknesses.Spectral resampling and normalization methods were used to reduce the differences in spectral reflectances between the experimental background seawater sample and real background seawater.Fitting the analysis with laboratory experimental data results showed a linear relationship between normalized oil slick reflectance and normalized oil slick thickness[20th band(R^(2)-0.92938,n=49,pB0.01),26th band(R^(2)=0.93806,n=49,pB0.01),29th band(R^(2)=0.93288,n=49,pB0.01)].By using these statistical models,we successfully determined the normalized oil slick thickness with the Hyperion image.Our results indicate that hyperspectral remote sensing technology is an effective method to monitor oil spills on water.The spectral ranges of visible green and red light were the optimal bands for estimating oil slick thickness in case 2 water.The high,stabilized spectral reflectance of background seawater will be helpful in oil slick thickness inversion. 展开更多
关键词 HYPERSPECTRAL optical remote sensing reflectance oil slick thickness oil spill
原文传递
Thermal Analysis and Validation of GF-4 Remote Sensing Camera 被引量:1
19
作者 LI Shiqi WANG Yue +1 位作者 ZHANG Heng YU Feng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期992-1000,共9页
The Chinese GF-4 satellite remote sensor is the highest spatial resolution among the civil satellite on the geosynchronous orbit, which carries on a camera with spatial resolution of 50 meter in the bands of visible a... The Chinese GF-4 satellite remote sensor is the highest spatial resolution among the civil satellite on the geosynchronous orbit, which carries on a camera with spatial resolution of 50 meter in the bands of visible and near infrared red and 400 meter in middle infrared red band. The thermal design of the spacecraft was challenging because the high resolution and the sensitivity requirement to achieve the desired scientific objectives. This paper presents the thermal analysis and test of the GF-4 in GEO orbit. The major findings of the analyses are the following. The GF-4 experiences complex, alternating external heat flux and faces direct sunlight in most of the orbital period. By applying a finite element model, the predicted temperature variation of the components remains in the desired temperature regime even in the extreme conditions. Comparing the thermal analysis results, the difference between the predicted and measured temperatures was less than 3°C for most of the components. The thermal control system functioned properly and the thermal model simulated the actual thermal design of GF-4. This thermal design method realizes the high efficiency and precision thermal control of the first high resolution geostationary orbit camera in China, which can provide reference for the high precision and stability thermal control of large aperture optical camera. 展开更多
关键词 thermal control system geostationary orbit thermal design optical remote sensor
原文传递
Unsupervised GRNN flood mapping approach combined with uncertainty analysis using bi-temporal Sentinel-2 MSI imageries
20
作者 Qi Zhang Penglin Zhang Xudong Hua 《International Journal of Digital Earth》 SCIE 2021年第11期1561-1581,共21页
Floods occur frequently worldwide.The timely,accurate mapping of the flooded areas is an important task.Therefore,an unsupervised approach is proposed for automated flooded area mapping from bitemporal Sentinel-2 mult... Floods occur frequently worldwide.The timely,accurate mapping of the flooded areas is an important task.Therefore,an unsupervised approach is proposed for automated flooded area mapping from bitemporal Sentinel-2 multispectral images in this paper.First,spatial–spectral features of the images before and after the flood are extracted to construct the change magnitude image(CMI).Then,the certain flood pixels and non-flood pixels are obtained by performing uncertainty analysis on the CMI,which are considered reliable classification samples.Next,Generalized Regression Neural Network(GRNN)is used as the core classifier to generate the initial flood map.Finally,an easy-toimplement two-stage post-processing is proposed to reduce the mapping error of the initial flood map,and generate the final flood map.Different from other methods based on machine learning,GRNN is used as the classifier,but the proposed approach is automated and unsupervised because it uses samples automatically generated in uncertainty analysis for model training.Results of comparative experiments in the three sub-regions of the Poyang Lake Basin demonstrate the effectiveness and superiority of the proposed approach.Moreover,its superiority in dealing with uncertain pixels is further proven by comparing the classification accuracy of different methods on uncertain pixels. 展开更多
关键词 Unsupervised flood mapping optical remote sensing image spatial–spectral feature extraction uncertainty analysis GRNN Sentinel-2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部