In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influen...In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influence of NH4Br addition on the ignition temperature and combustion characteristics was studied using a thermogravimetric analyzer. The effects of the NHaBr addition amount on gas-phase mercury oxidation and removal were investigated in a bench scale of 6 kW fluidized bed combustor (FBC). Mercury concentrations in flue gas were determined by the Ontario hydro method (OHM) and the mercury mass balance was obtained. Results show that the NH4Br addition has little influence on the ignition temperature of Guizhou anthracite. With the mercury mass balance of 95.47%, the proportion of particulate mercury Hg^p, gaseous mercury Hg^0 and Hg^2+ are 75.28%, 11.60% and 13. 12%, respectively, as raw coal combustion. The high particulate mercury Hg^p in flue gas is caused by the high unburned carbon content in fly ash. When the NH4Br addition amount increases from 0 to 0. 3%, the concentration of gaseous Hg^0 and Hg^2+ in flue gas decreases continuously, leading to the Hg^p increase accordingly. The oxidation rate of Hg^0 is positively correlated to the Br addition amount. It demonstrates that coal combustion with NH4Br addition can promote Hg^0 oxidation and removal. NOx concentration in flue gas exhibits a descending trend with the NHaBr addition and the removal rate reaches 17.31% with the addition amount of 0.3%. Adding NH4Br to coal also plays a synergistic role in denitration.展开更多
The mercury removals by existing pollution control devices and the mass balances of mercury in four coal-fired power plants of China were carried out based on a measurement method with the aluminum matrix sorbent.All ...The mercury removals by existing pollution control devices and the mass balances of mercury in four coal-fired power plants of China were carried out based on a measurement method with the aluminum matrix sorbent.All the plants are equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series.During the course of coal stream,the samples,such as coal,bottom ash,fly ash,gypsum and flue gas,were collected.The Hg concentrations in coals were measured by CVAAS after appropriate preparation and acid digestion.Other solid samples were measured by the RA-915 + Zeeman Mercury Spectrometer.The vapor phase Hg was collected by a sorbent trap from flue gas and then measured using CVAAS followed by acid leaching.The mercury mass balances were estimated in this study were 91.6%,77.1%,118% and 85.8% for the four power plants,respectively.The total Hg concentrations in the stack gas were ranged from 1.56–5.95 μg/m 3.The relative distribution of Hg in bottom ash,ESP,WFGD and stack discharged were ranged between 0.110%–2.50%,2.17%–23.4%,2.21%–87.1%,and 21.8%–72.7%,respectively.The distribution profiles were varied with the coal type and the operation conditions.The Hg in flue gas could be removed by ESP and FGD systems with an average removal efficiency of 51.8%.The calculated average emission factor was 0.066 g/ton and much lower than the results obtained ten years ago.展开更多
The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg were investigated in an attempt to produce more effective and lower price adsorbents for the control...The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg were investigated in an attempt to produce more effective and lower price adsorbents for the control of elemental mercury emission. Brunauer-Emmett- Teller (BET) measurements, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface physical and chemical properties of SC, Mn-SC and Mn-H-SC before and after mercury adsorption. The results indicated that potassium permanganate modification had significant influence on the properties of semi-coke, such as the specific surface area, pore structure and surface chemical functional groups. The mercury adsorption efficiency of modified semi-coke was lower than that of SC at low temperature, but much higher at high temperature. Amorphous Mn7+, Mn6+ and Mn4+ on the surface of Mn-SC and Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg~, which oxidized the elemental mercury into Hg2+ and captured it. Thermal treatment reduced the average oxidation degree of Mn2+ on the surface of Mn-SC from 3.80 to 3.46. However, due to the formation of amorphous MnOx, the surface oxidation active sites for gaseous Hg0 increased, which gave Mn-H-SC higher mercury adsorption efficiency than that of Mn-SC at high temperature.展开更多
This study described the use of clay impreg- nated by KI in gas phase elemental mercury (Hg°) removal in flue gas. The effects of KI loading, temperature, 02, SO2 and H20 on Hg°removal were investigated us...This study described the use of clay impreg- nated by KI in gas phase elemental mercury (Hg°) removal in flue gas. The effects of KI loading, temperature, 02, SO2 and H20 on Hg°removal were investigated using a fixed bed reactor. The Hg° removal efficiency of KI-clay with 3% KI loading could maintain at a high level (approxi- mately 80 %) after 3 h. The KI-clay demonstrated to be a potential adsorbent for Hg° removal when compared with activated carbon based adsorbent. 02 was found to be an important factor in improving the Hg° removal. 02 was demonstrated to assist the transfer of KI to I2 on the surface of KI-clay, which could react with Hg° directly. NO and SO2 could slightly improve Hg° removal, while H20 inhibited it greatly. The results indicated that after adsorption, most of the mercury escaped from the surface again. Some of the mercury may have been oxidized as it left the surface. The results demonstrated that the chemical reaction primarily occurred between KI and mercury on the surface of the KI-clay.展开更多
基金The National Natural Science Foundation of China(No.51376046,51076030)the National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAA02B01)+2 种基金the United Creative Foundation of Jiangsu Province(No.BY2013073-10)the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(CXZZ13_0093,KYLX_0115,KYLX_0184)
文摘In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influence of NH4Br addition on the ignition temperature and combustion characteristics was studied using a thermogravimetric analyzer. The effects of the NHaBr addition amount on gas-phase mercury oxidation and removal were investigated in a bench scale of 6 kW fluidized bed combustor (FBC). Mercury concentrations in flue gas were determined by the Ontario hydro method (OHM) and the mercury mass balance was obtained. Results show that the NH4Br addition has little influence on the ignition temperature of Guizhou anthracite. With the mercury mass balance of 95.47%, the proportion of particulate mercury Hg^p, gaseous mercury Hg^0 and Hg^2+ are 75.28%, 11.60% and 13. 12%, respectively, as raw coal combustion. The high particulate mercury Hg^p in flue gas is caused by the high unburned carbon content in fly ash. When the NH4Br addition amount increases from 0 to 0. 3%, the concentration of gaseous Hg^0 and Hg^2+ in flue gas decreases continuously, leading to the Hg^p increase accordingly. The oxidation rate of Hg^0 is positively correlated to the Br addition amount. It demonstrates that coal combustion with NH4Br addition can promote Hg^0 oxidation and removal. NOx concentration in flue gas exhibits a descending trend with the NHaBr addition and the removal rate reaches 17.31% with the addition amount of 0.3%. Adding NH4Br to coal also plays a synergistic role in denitration.
基金supported by the National High-Tech Research and Development Program (863) of China(No.2007AA06Z340)
文摘The mercury removals by existing pollution control devices and the mass balances of mercury in four coal-fired power plants of China were carried out based on a measurement method with the aluminum matrix sorbent.All the plants are equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series.During the course of coal stream,the samples,such as coal,bottom ash,fly ash,gypsum and flue gas,were collected.The Hg concentrations in coals were measured by CVAAS after appropriate preparation and acid digestion.Other solid samples were measured by the RA-915 + Zeeman Mercury Spectrometer.The vapor phase Hg was collected by a sorbent trap from flue gas and then measured using CVAAS followed by acid leaching.The mercury mass balances were estimated in this study were 91.6%,77.1%,118% and 85.8% for the four power plants,respectively.The total Hg concentrations in the stack gas were ranged from 1.56–5.95 μg/m 3.The relative distribution of Hg in bottom ash,ESP,WFGD and stack discharged were ranged between 0.110%–2.50%,2.17%–23.4%,2.21%–87.1%,and 21.8%–72.7%,respectively.The distribution profiles were varied with the coal type and the operation conditions.The Hg in flue gas could be removed by ESP and FGD systems with an average removal efficiency of 51.8%.The calculated average emission factor was 0.066 g/ton and much lower than the results obtained ten years ago.
基金supported by the National Natural Science Foundation of China (No. 21006059)the Project of Shandong Province Higher Educational Science and Technology Program (No. J11LB61)
文摘The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg were investigated in an attempt to produce more effective and lower price adsorbents for the control of elemental mercury emission. Brunauer-Emmett- Teller (BET) measurements, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface physical and chemical properties of SC, Mn-SC and Mn-H-SC before and after mercury adsorption. The results indicated that potassium permanganate modification had significant influence on the properties of semi-coke, such as the specific surface area, pore structure and surface chemical functional groups. The mercury adsorption efficiency of modified semi-coke was lower than that of SC at low temperature, but much higher at high temperature. Amorphous Mn7+, Mn6+ and Mn4+ on the surface of Mn-SC and Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg~, which oxidized the elemental mercury into Hg2+ and captured it. Thermal treatment reduced the average oxidation degree of Mn2+ on the surface of Mn-SC from 3.80 to 3.46. However, due to the formation of amorphous MnOx, the surface oxidation active sites for gaseous Hg0 increased, which gave Mn-H-SC higher mercury adsorption efficiency than that of Mn-SC at high temperature.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 51176077), the Key Project of the Natural Science Foundation of Tianjin (No. 12JCZDJC29300) and the Marine Science and Technology Project from the Tianjin Marine Bureau (No. KJXH2013-05).
文摘This study described the use of clay impreg- nated by KI in gas phase elemental mercury (Hg°) removal in flue gas. The effects of KI loading, temperature, 02, SO2 and H20 on Hg°removal were investigated using a fixed bed reactor. The Hg° removal efficiency of KI-clay with 3% KI loading could maintain at a high level (approxi- mately 80 %) after 3 h. The KI-clay demonstrated to be a potential adsorbent for Hg° removal when compared with activated carbon based adsorbent. 02 was found to be an important factor in improving the Hg° removal. 02 was demonstrated to assist the transfer of KI to I2 on the surface of KI-clay, which could react with Hg° directly. NO and SO2 could slightly improve Hg° removal, while H20 inhibited it greatly. The results indicated that after adsorption, most of the mercury escaped from the surface again. Some of the mercury may have been oxidized as it left the surface. The results demonstrated that the chemical reaction primarily occurred between KI and mercury on the surface of the KI-clay.