The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO conce...The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO concentrations in the absence or presence of SO2 gas at 45℃. The effect of SO2 on NO oxidation and NO2 absorption was critically examined. The oxidative ability of sodium chlorite was investigated at different pH values and it was found to be a better oxidant at a pH less than 4. In acidic medium, sodium chlorite decomposed into C102 gas, which is believed to participate in NO oxidation as well as in NO2 absorption. A plausible NOx removal mechanism using acidic sodium chlorite solution has been postulated. A maximum NOx removal efficiency of about 81% has been achieved.展开更多
A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring parti...A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring particle-bound and total vapor-phase mercury in flue gas. A dedusting device is installed to collect fine fly ash for reducing the measurement errors. The thorough comparison test of mercury concentration in flue gas is conducted between the novel sampling system and the Ontario hydro method (OHM) in a 6 kW circulating fluidized bed combustor. Mercury mass balance rates of the OHM range from 95.47% to 104.72%. The mercury breakthrough rates for the second section of the sorbent trap are all below 2%. The relative deviations in the two test cases are in the range of 15. 96% to 17. 56% under different conditions. The verified data suggest that this novel carbon trap sampling system can meet the standards of quality assurance and quality control required by EPA Method 30B and can be applied to the coal-fired flue gas mercury sampling system.展开更多
Absorptive separation for resource utilization by selective SO2 removal from flue gas is a potential method applicable in practice. A flue gas desulfurization process for SO2 utilization by selective absorption in a l...Absorptive separation for resource utilization by selective SO2 removal from flue gas is a potential method applicable in practice. A flue gas desulfurization process for SO2 utilization by selective absorption in a lab-scale absorption tower at atmospheric pressure using N-formylmorpholine (NFM) as the absorbent is developed to capture and concentrate the SO2 from flue gas, in which the CO2 content is several orders higher than that of SO2. The investigation of the effects of different operating conditions on the SO2 removal efficiency shows that the SO2 removal efficiency can be obviously enhanced by increasing NFM concentration, or decreasing the absorption temperature, the superficial gas velocity, the gas-liquid ratio, or the SO2 concentration in absorption solution. Under the optimum operating conditions (covering a temperature of 40 °C, a superficial gas velocity of <0.0165 m/s, a gas-liquid ratio of 200—250, a SO2 concentration in lean NFM solution of 0—10 mg/L, and a NFM concentration of 3 mol/L), the SO2 removal rate reaches over 99.5% while the absorption of CO2 is negligible. Similarly, the SO2 removal rate is as high as 99.5% obtained in consecutive absorption-desorption cycles. Desorption experiment results indicate that the absorption of sulfur dioxide is completely reversible and the release of SO2 from NFM is very easy and rapid at 104 °C. The absorption simulation result for desulfurization of flue gas vented from the industrial catalytic cracking regenerator shows that 98.0% of SO2 can be absorbed in the absorber and most of them are released in the desorber. The experimental and simulated results show that the desulfurization ability and regenerability of NFM solution is encouraging for the development of FGD process to capture the SO2 from flue gas.展开更多
In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic ...In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic precipitator(WESP).In this work,particulate matter with aerodynamic diameter less than 10μm(PM_(10))and sulfur oxides(SO_(x))have been studied in a coal-fired power plant.The plant is equipped with selective catalytic reduction,electrostatic precipitator,WFGD,WESP.The results show that the PM_(10)removal efficiencies in WFGD and WESP are 54.34%and 50.39%,respectively,and the overall removal efficiency is 77.35%.WFGD and WESP have effects on the particle size distribution.After WFGD,the peak of particles shifts from 1.62 to 0.95μm,and the mass concentration of fine particles with aerodynamic diameter less than 0.61μm increases.After WESP,the peak of particle size shifts from 0.95 to 1.61μm.The differences are due to the agglomeration and growth of small particles.The SO_(3)mass concentration increases after SCR,but WFGD has a great influence on SO_(x)with the efficiency of 96.56%.WESP can remove SO_(x),but the efficiency is 20.91%.The final emission factors of SO_(2),SO_(3),PM_(1),PM_(2.5)and PM_(10)are 0.1597,0.0450,0.0154,0.0267 and 0.0215(kg·t^(−1)),respectively.Compared with the research results without ultra-low emission retrofit,the emission factors are reduced by 1~2 orders of magnitude,and the emission control level of air pollutants is greatly improved.展开更多
The prevention and treatment of mercury in coal-fired power plants has always been the focus and difficulty.How to control the pollution of mercury to human body and ecological environment quickly and effectively is a...The prevention and treatment of mercury in coal-fired power plants has always been the focus and difficulty.How to control the pollution of mercury to human body and ecological environment quickly and effectively is a hot research topic nowadays.As a low cost and potential adsorbent,there is a huge space for the development of coal dry powder gasification coarse slag.In this paper,Mercury osmotic tubes are heated by water bath tank as mercury source,and the scavenging effect of adsorbent on Mercury monomer under different influence conditions is explored.The adsorbent plays an important role in adsorption of mercury monomer because of its special active sites on the surface.The reason is that the adsorbent surface is rich in carboxyl group,hydroxyl functional group,combined with mercury to form complexes.This shows that chemical adsorption facilitates the adsorption process.展开更多
In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and mor...In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.展开更多
Due to the restriction such as the Minamata Convention as well as the IED of the European Commission,mercury removal from flue gases of coal-fired power plants(CPP)is an increasingly important environmental issue.This...Due to the restriction such as the Minamata Convention as well as the IED of the European Commission,mercury removal from flue gases of coal-fired power plants(CPP)is an increasingly important environmental issue.This makes this topic very crucial for both the energy industry and scientists.This paper shows how mercury arises from natural resources,i.e.,coals,through their combustion processes in CPP and considers the issue of mercury content in flue gases and solid-state coal combustion by-products.The main part of this paper presents a review of the solid sorbents available for elemental mercury control and removal processes,tested on a laboratory scale.The described solutions have a potential for wider usage in exhaust gas treatment processes in the energy production sector.These solutions represent the latest developments in the field of elemental mercury removal from gases.The authors present an overview of the wide range of solid sorbents and their modifications intended to increase affinity for Hg^(0).Among the presented sorbents are the wellknown activated carbon solutions but also novel modifications to these and other innovative sorbent proposals based on,e.g.,zeolites,biochars,other carbon-based materials,metal-organic frameworks.The paper presents a wide range of characteristics of the described sorbents,as well as the conditions for the Hg^(0) removal experiments summarizing the compendium of novel solid sorbent solutions dedicated to the removal of elemental mercury from gases.展开更多
Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration...Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.展开更多
The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges ...The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges in developing the DRT, studies were conducted on a series of purification technologies and the DRT was developed and successfully applied in 660 MW and 1000 MW coal-fired units. This paper analyzes the application results of the demonstration project, and proposes a roadmap for the follow-up researches and optimizations.展开更多
There exists a certain amount of SO_3 in flue gas discharged from coal-fired power plants. With the operation of the selective catalystic reduction( SCR) denitrification system,SO_3 concentration in the flue gas incre...There exists a certain amount of SO_3 in flue gas discharged from coal-fired power plants. With the operation of the selective catalystic reduction( SCR) denitrification system,SO_3 concentration in the flue gas increases,which will lead to fouling,erosion and plugging of downstream equipment. In this study,the main effects of SO_3 on the safety,stability and efficiency of units were analyzed,and measures to control SO_3 were proposed.展开更多
The current status and trend of CO2 emission from coal-fired power plants in China are introduced. Main flue gas decarbonization technologies and their prospective of applications in China are discussed in two separat...The current status and trend of CO2 emission from coal-fired power plants in China are introduced. Main flue gas decarbonization technologies and their prospective of applications in China are discussed in two separate parts-capture and sequestration. It is stated that the selection of CO2 capture and sequestration technologies relates closely with the geographical location of power plants, with the destination of CO2 being the key. Further, it is suggested that industrialized test centers or test platforms of national or industrial level should be set up.展开更多
Liquid desiccant systems are promising methods to recover water and waste heat simultaneously from flue gas.Prior research found that the reduction of particulate matter could occur during the absorption processes.In ...Liquid desiccant systems are promising methods to recover water and waste heat simultaneously from flue gas.Prior research found that the reduction of particulate matter could occur during the absorption processes.In the present paper,experiments were carried out to explore the effect of removing fine particulate matter(PM_(2.5))in a liquid desiccant dehumidifier.Aqueous calcium chloride(CaCl_(2))was used as the desiccant in the experiments.The discrepancies in mass and energy conservation were within±10%and±15%,respectively,which showed the good reliability of the experimental results.Additionally,23.5%–46.0%of the PM_(2.5)and 23.9%–45.1%of the moisture in the flue gas were removed.By comparing the desiccant solution and water,it was found that they could minimally remove PM_(2.5)through washing the flue gas.Regardless of whether the flue gas was dehumidified by water or the solution,the removal fractions of PM_(2.5)of these two methods could be very close if they achieve the same fraction of moisture removal.From the results of a parameter analysis,it was found that the removal fraction of PM_(2.5)was nearly proportional to the removal fraction of moisture within the experimental range.展开更多
Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment,and the development of deNO_(x) catalysts with low-cost and high performance is an urgent requirement.Iron o...Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment,and the development of deNO_(x) catalysts with low-cost and high performance is an urgent requirement.Iron oxide-based material has been explored for promising deNO_(x) catalysts.However,the unsatisfactory low-temperature activity limits their practical applications.In this study,a series of excellent low-temperature denitrification catalysts(Ha-FeO_(x)/yZS)were prepared by acid treatment of zinc slag,and the mass ratios of Fe to impure ions was regulated by adjusting the acid concentrations.Ha-FeO_(x)/yZS showed high denitrification performance(>90%)in the range of 180–300℃,and the optimal NO conversion and N2 selectivity were higher than 95%at 250℃.Among them,the Ha-FeO_(x)/2ZS synthesized with 2 mol/L HNO3 exhibited the widest temperature window(175–350℃).The excellent denitrification performance of Ha-FeO_(x)/yZS was mainly attributed to the strong interaction between Fe and impurity ions to inhibit the growth of crystals,making Ha-FeO_(x)/yZS with amorphous structure,nice fine particles,large specific surface area,more surface acid sites and high chemisorbed oxygen.The in-situ DRIFT experiments confirmed that the SCR reaction on the Ha-FeO_(x)/yZS followed both Langmuir-Hinshelwood(L-H)mechanism and Eley-Rideal(E-R)mechanism.The present work proposed a high value-added method for the preparation of cost-effective catalysts from zinc slag,which showed a promising application prospect in NO_(x) removal by selective catalytic reduction with ammonia.展开更多
The coal-fired flue gas spraying wastewater is a kind of refractory mixed wastewater with poor biodegradability.In this study,the degradation of model coal-fired flue gas spraying wastewater was studied by using disch...The coal-fired flue gas spraying wastewater is a kind of refractory mixed wastewater with poor biodegradability.In this study,the degradation of model coal-fired flue gas spraying wastewater was studied by using discharge free radicals produced by double-dielectric barrier discharge.The degradation rate of pollutants,chemical oxygen demand removal rate and other indicators were detected,and the influence of different conditions on the degradation effect was analyzed.The optimal parameters are as follows:residence time 120 min,input power 170.0 W,initial pH value 3.79,and aeration rate 1.8 mL/min.The initial concentrations of acetone,formaldehyde,chloroform,benzene and toluene were 100,100,100,and 100 mg/L,respectively.Furthermore,it is proved that the discharge area is independent of the degradation rate.Through the analysis of the mechanism,it is found that·OH is an important factor affecting the degradation rate of pollutants in model coal-fired flue gas spraying wastewater.展开更多
This paper introduced the research background and technical features of Baosteel' s sintering flue gas desulfurization (FGD). It was also named swirl-jet-absorbing wet limestone-gypsum sintering FGD technology. By ...This paper introduced the research background and technical features of Baosteel' s sintering flue gas desulfurization (FGD). It was also named swirl-jet-absorbing wet limestone-gypsum sintering FGD technology. By means of industrial online pilot plants, through continuous running and orthogonal tests, the effects of various influencing factors on SO2 removal efficiency of Baosteel sintering flue gas desulgurization (BSFGD) were studied carefully. The results indicate that the slurry pH value,temperature (T) and flow rate (Q) of inlet flue gas,liquid level (H) in the absorber and flue gas jet velocity (V) are the main influencing factors. Furthermore, when pH is between 5.0 and 5.5, H is between 4.2 m and 4.3 m, Q is 43 000 m3/h, T is below 65℃ and V is between 20 m/s and 28 m/s, the best desulfurization efficiency can be available.展开更多
Land application of anaerobic digestion(AD)effluent as a fertilizer is desirable for nutrient recycling,but often supplies excess phosphorus(P),which contributes to surface water eutrophication.Reducing the P content ...Land application of anaerobic digestion(AD)effluent as a fertilizer is desirable for nutrient recycling,but often supplies excess phosphorus(P),which contributes to surface water eutrophication.Reducing the P content in AD effluent filtrate using calcium(Ca)treatment prior to land application is a potential strategy for improving effluent disposal and meeting the discharge standard.This study took flue gas desulphurization(FGD)gypsum,a by-product of coal-fired power plants,as a low-cost Ca source,and combined with traditional phosphorus removal agents to achieve high phosphorus removal efficiency with less chemical cost.As the results showed,FGD gypsum dosages of 20 mmol/L Ca(3.44 g/L)and 40 mmol/L Ca(6.89 g/L)removed up to 97.1%of soluble P(initially 102.8 mg/L)within 60-90 minutes.Combining FGD gypsum treatment with traditional chemical treatments using calcium hydroxide[Ca(OH)2]or ferric chloride(FeCl3)could achieve>99%P removal with reduced chemical costs.This study demonstrated that FGD gypsum is an efficient calcium-based precipitant for phosphorus removal,offering a cost-effective and sustainable approach to enhance wastewater treatment practices and meet discharge standards in wastewater management.展开更多
A new type of internally illuminated honeycomb photoreactor was designed. The honeycomb catalyst prepared by using Cedoped TiO2 with 1%–2% vanadium and tungsten was employed for mercury removal from simulated industr...A new type of internally illuminated honeycomb photoreactor was designed. The honeycomb catalyst prepared by using Cedoped TiO2 with 1%–2% vanadium and tungsten was employed for mercury removal from simulated industrial flue gas. The adsorption kinetics in the reaction process were studied. The results showed that the internally illuminated honeycomb photoreactor had good mercury removal performance. When the temperature was 25℃ and the ultraviolet(UV) light intensity reached 80 μW/cm2, the mercury removal efficiency reached 92.5%. The mercury removal efficiency increased significantly with the doping ratio of Ce. XPS analysis showed that the oxidation state of Ce changed from 4 to 3 in the mercury removal reaction and produced lattice oxygen, which acts as an oxidant. O2 can promote mercury removal by honeycomb catalysts;SO2 and HCl also had positive effects, while NO had an inhibitory effect on mercury removal. Kinetic research in the reaction process showed that the quasi-first-order dynamic model had good fitting results, and the correlation coefficients of the fitting results for multiple sets of experimental data were more than 0.999.展开更多
The corrosion condition of flue gas desulfurization (FGD) equipment for the coal-fired power plant was defined as the strong corrosion grade. The lining system of hybrid polymer composite was used in internal cylinder...The corrosion condition of flue gas desulfurization (FGD) equipment for the coal-fired power plant was defined as the strong corrosion grade. The lining system of hybrid polymer composite was used in internal cylinder of steel chimney, and a corrosion-resistant and heat-resistant protective layer was formed on the metal surface. The corrosion-resistant and ageing-resistant properties of hybrid polymer composite prepared at low temperature after four years of practical use were investigated by differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and measurement of gravimetric variation, contact angle, abrasion resistance, bonding strength and tensile strength. The properties of hybrid polymer composites prepared at 25℃ and –15℃ were comparatively analyzed in the paper.展开更多
For the improvement of reheat steam quality and performance of double reheat coal-fired utility boiler under wide load operation, a variety of temperature regulation ways were utilized to adjust the energy distributio...For the improvement of reheat steam quality and performance of double reheat coal-fired utility boiler under wide load operation, a variety of temperature regulation ways were utilized to adjust the energy distribution between different heating surfaces. In this paper, thermodynamic calculation based on the fundamental heat transfer theory was conducted for the analysis of temperature regulation strategy effects to steam temperature. In consideration of the specific overlapping heating surface arrangement, the compartment model was adopted to solve this problem. Response surface methodology(RSM) was used to analysis the effect of each temperature regulating variables on the steam temperature and boiler efficiency;then the polynomial model was fitted to predict the primary and secondary steam temperature simultaneously. Results showed that the flue gas recirculation rate has a relatively significant influence on the steam temperature, the maximum temperature deviation between fitting value and calculation value is 3.85℃ in 75% THA;the quadratic model can well predict the steam temperature under different operation conditions in wide load change. The variation of flue gas baffle has a significant influence on the boiler efficiency, compared to the flue gas recirculation and angle of burner oscillation. The influence of various factors on the reheat steam temperature is flue gas baffle > flue gas recirculation > angle of burner oscillation.展开更多
Reduction of NO2 with CO in the presence of NO and excess oxygen, a model mixture for flue gas, over a 0.1% Pt/SiO2 catalyst was studied. The related reaction mechanisms, such as oxidation of CO and NO, were discussed...Reduction of NO2 with CO in the presence of NO and excess oxygen, a model mixture for flue gas, over a 0.1% Pt/SiO2 catalyst was studied. The related reaction mechanisms, such as oxidation of CO and NO, were discussed. It was found that there was a narrow temperature window (180-190 ℃) for the reduction of NO2 by CO. When the temperature was lower than the lower limit of the window, the reduction hardly occurred, while when the temperature was higher than the upper limit of the window, the direct oxidation of CO by O2 occurred and thereby NO2 could not be effectively reduced by CO. The presence of NO shifted the window to higher temperatures owing to the inhibition effect of NO on the activation of O2 on Pt, which made it possible to reduce NO2 by CO in flue gas.展开更多
文摘The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO concentrations in the absence or presence of SO2 gas at 45℃. The effect of SO2 on NO oxidation and NO2 absorption was critically examined. The oxidative ability of sodium chlorite was investigated at different pH values and it was found to be a better oxidant at a pH less than 4. In acidic medium, sodium chlorite decomposed into C102 gas, which is believed to participate in NO oxidation as well as in NO2 absorption. A plausible NOx removal mechanism using acidic sodium chlorite solution has been postulated. A maximum NOx removal efficiency of about 81% has been achieved.
基金The National Natural Science Foundation of China(No.51376046,51076030)the National Science and Technology Support Program of China(No.2012BAA02B01)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ13_0093,KYLX_0115,KYLX_018)
文摘A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring particle-bound and total vapor-phase mercury in flue gas. A dedusting device is installed to collect fine fly ash for reducing the measurement errors. The thorough comparison test of mercury concentration in flue gas is conducted between the novel sampling system and the Ontario hydro method (OHM) in a 6 kW circulating fluidized bed combustor. Mercury mass balance rates of the OHM range from 95.47% to 104.72%. The mercury breakthrough rates for the second section of the sorbent trap are all below 2%. The relative deviations in the two test cases are in the range of 15. 96% to 17. 56% under different conditions. The verified data suggest that this novel carbon trap sampling system can meet the standards of quality assurance and quality control required by EPA Method 30B and can be applied to the coal-fired flue gas mercury sampling system.
基金supported by National Natural Science Foundation of China (Major Program: 61590923)International (Regional) Cooperation and Exchange Project(No. 61720106008)+2 种基金National Natural Science Foundation of China (No. 61873093)National Science Fund for Distinguished Young Scholars (61725301)the Fundamental Research Funds for the Central Universities
文摘Absorptive separation for resource utilization by selective SO2 removal from flue gas is a potential method applicable in practice. A flue gas desulfurization process for SO2 utilization by selective absorption in a lab-scale absorption tower at atmospheric pressure using N-formylmorpholine (NFM) as the absorbent is developed to capture and concentrate the SO2 from flue gas, in which the CO2 content is several orders higher than that of SO2. The investigation of the effects of different operating conditions on the SO2 removal efficiency shows that the SO2 removal efficiency can be obviously enhanced by increasing NFM concentration, or decreasing the absorption temperature, the superficial gas velocity, the gas-liquid ratio, or the SO2 concentration in absorption solution. Under the optimum operating conditions (covering a temperature of 40 °C, a superficial gas velocity of <0.0165 m/s, a gas-liquid ratio of 200—250, a SO2 concentration in lean NFM solution of 0—10 mg/L, and a NFM concentration of 3 mol/L), the SO2 removal rate reaches over 99.5% while the absorption of CO2 is negligible. Similarly, the SO2 removal rate is as high as 99.5% obtained in consecutive absorption-desorption cycles. Desorption experiment results indicate that the absorption of sulfur dioxide is completely reversible and the release of SO2 from NFM is very easy and rapid at 104 °C. The absorption simulation result for desulfurization of flue gas vented from the industrial catalytic cracking regenerator shows that 98.0% of SO2 can be absorbed in the absorber and most of them are released in the desorber. The experimental and simulated results show that the desulfurization ability and regenerability of NFM solution is encouraging for the development of FGD process to capture the SO2 from flue gas.
基金The work was supported by the National Key Research and Development Plan of China(No.2016YFB0600605).
文摘In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic precipitator(WESP).In this work,particulate matter with aerodynamic diameter less than 10μm(PM_(10))and sulfur oxides(SO_(x))have been studied in a coal-fired power plant.The plant is equipped with selective catalytic reduction,electrostatic precipitator,WFGD,WESP.The results show that the PM_(10)removal efficiencies in WFGD and WESP are 54.34%and 50.39%,respectively,and the overall removal efficiency is 77.35%.WFGD and WESP have effects on the particle size distribution.After WFGD,the peak of particles shifts from 1.62 to 0.95μm,and the mass concentration of fine particles with aerodynamic diameter less than 0.61μm increases.After WESP,the peak of particle size shifts from 0.95 to 1.61μm.The differences are due to the agglomeration and growth of small particles.The SO_(3)mass concentration increases after SCR,but WFGD has a great influence on SO_(x)with the efficiency of 96.56%.WESP can remove SO_(x),but the efficiency is 20.91%.The final emission factors of SO_(2),SO_(3),PM_(1),PM_(2.5)and PM_(10)are 0.1597,0.0450,0.0154,0.0267 and 0.0215(kg·t^(−1)),respectively.Compared with the research results without ultra-low emission retrofit,the emission factors are reduced by 1~2 orders of magnitude,and the emission control level of air pollutants is greatly improved.
文摘The prevention and treatment of mercury in coal-fired power plants has always been the focus and difficulty.How to control the pollution of mercury to human body and ecological environment quickly and effectively is a hot research topic nowadays.As a low cost and potential adsorbent,there is a huge space for the development of coal dry powder gasification coarse slag.In this paper,Mercury osmotic tubes are heated by water bath tank as mercury source,and the scavenging effect of adsorbent on Mercury monomer under different influence conditions is explored.The adsorbent plays an important role in adsorption of mercury monomer because of its special active sites on the surface.The reason is that the adsorbent surface is rich in carboxyl group,hydroxyl functional group,combined with mercury to form complexes.This shows that chemical adsorption facilitates the adsorption process.
文摘In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.
基金This work was supported by the National Centre for Research and Development project LIDER,Contract Number LIDER/384/L-6/14/NCBR/2015.
文摘Due to the restriction such as the Minamata Convention as well as the IED of the European Commission,mercury removal from flue gases of coal-fired power plants(CPP)is an increasingly important environmental issue.This makes this topic very crucial for both the energy industry and scientists.This paper shows how mercury arises from natural resources,i.e.,coals,through their combustion processes in CPP and considers the issue of mercury content in flue gases and solid-state coal combustion by-products.The main part of this paper presents a review of the solid sorbents available for elemental mercury control and removal processes,tested on a laboratory scale.The described solutions have a potential for wider usage in exhaust gas treatment processes in the energy production sector.These solutions represent the latest developments in the field of elemental mercury removal from gases.The authors present an overview of the wide range of solid sorbents and their modifications intended to increase affinity for Hg^(0).Among the presented sorbents are the wellknown activated carbon solutions but also novel modifications to these and other innovative sorbent proposals based on,e.g.,zeolites,biochars,other carbon-based materials,metal-organic frameworks.The paper presents a wide range of characteristics of the described sorbents,as well as the conditions for the Hg^(0) removal experiments summarizing the compendium of novel solid sorbent solutions dedicated to the removal of elemental mercury from gases.
基金supported by the National Natural Science Foundation of China (Grant No. 50721140649)
文摘Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.
文摘The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges in developing the DRT, studies were conducted on a series of purification technologies and the DRT was developed and successfully applied in 660 MW and 1000 MW coal-fired units. This paper analyzes the application results of the demonstration project, and proposes a roadmap for the follow-up researches and optimizations.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2013AA065401)
文摘There exists a certain amount of SO_3 in flue gas discharged from coal-fired power plants. With the operation of the selective catalystic reduction( SCR) denitrification system,SO_3 concentration in the flue gas increases,which will lead to fouling,erosion and plugging of downstream equipment. In this study,the main effects of SO_3 on the safety,stability and efficiency of units were analyzed,and measures to control SO_3 were proposed.
文摘The current status and trend of CO2 emission from coal-fired power plants in China are introduced. Main flue gas decarbonization technologies and their prospective of applications in China are discussed in two separate parts-capture and sequestration. It is stated that the selection of CO2 capture and sequestration technologies relates closely with the geographical location of power plants, with the destination of CO2 being the key. Further, it is suggested that industrialized test centers or test platforms of national or industrial level should be set up.
基金supported by a National Science and Technology Major Project (No.2017-Ⅰ-0009-0010)
文摘Liquid desiccant systems are promising methods to recover water and waste heat simultaneously from flue gas.Prior research found that the reduction of particulate matter could occur during the absorption processes.In the present paper,experiments were carried out to explore the effect of removing fine particulate matter(PM_(2.5))in a liquid desiccant dehumidifier.Aqueous calcium chloride(CaCl_(2))was used as the desiccant in the experiments.The discrepancies in mass and energy conservation were within±10%and±15%,respectively,which showed the good reliability of the experimental results.Additionally,23.5%–46.0%of the PM_(2.5)and 23.9%–45.1%of the moisture in the flue gas were removed.By comparing the desiccant solution and water,it was found that they could minimally remove PM_(2.5)through washing the flue gas.Regardless of whether the flue gas was dehumidified by water or the solution,the removal fractions of PM_(2.5)of these two methods could be very close if they achieve the same fraction of moisture removal.From the results of a parameter analysis,it was found that the removal fraction of PM_(2.5)was nearly proportional to the removal fraction of moisture within the experimental range.
基金National Natural Science Foundation of China(21676209)Natural Science Basic Research Program of Shaanxi(2022JQ-328)Postdoctoral Research Foundation of the Xi’an University of Architecture and Technology(19603210120).
文摘Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment,and the development of deNO_(x) catalysts with low-cost and high performance is an urgent requirement.Iron oxide-based material has been explored for promising deNO_(x) catalysts.However,the unsatisfactory low-temperature activity limits their practical applications.In this study,a series of excellent low-temperature denitrification catalysts(Ha-FeO_(x)/yZS)were prepared by acid treatment of zinc slag,and the mass ratios of Fe to impure ions was regulated by adjusting the acid concentrations.Ha-FeO_(x)/yZS showed high denitrification performance(>90%)in the range of 180–300℃,and the optimal NO conversion and N2 selectivity were higher than 95%at 250℃.Among them,the Ha-FeO_(x)/2ZS synthesized with 2 mol/L HNO3 exhibited the widest temperature window(175–350℃).The excellent denitrification performance of Ha-FeO_(x)/yZS was mainly attributed to the strong interaction between Fe and impurity ions to inhibit the growth of crystals,making Ha-FeO_(x)/yZS with amorphous structure,nice fine particles,large specific surface area,more surface acid sites and high chemisorbed oxygen.The in-situ DRIFT experiments confirmed that the SCR reaction on the Ha-FeO_(x)/yZS followed both Langmuir-Hinshelwood(L-H)mechanism and Eley-Rideal(E-R)mechanism.The present work proposed a high value-added method for the preparation of cost-effective catalysts from zinc slag,which showed a promising application prospect in NO_(x) removal by selective catalytic reduction with ammonia.
基金supported by enterprise projects(No.YT2017,No.YG1908).
文摘The coal-fired flue gas spraying wastewater is a kind of refractory mixed wastewater with poor biodegradability.In this study,the degradation of model coal-fired flue gas spraying wastewater was studied by using discharge free radicals produced by double-dielectric barrier discharge.The degradation rate of pollutants,chemical oxygen demand removal rate and other indicators were detected,and the influence of different conditions on the degradation effect was analyzed.The optimal parameters are as follows:residence time 120 min,input power 170.0 W,initial pH value 3.79,and aeration rate 1.8 mL/min.The initial concentrations of acetone,formaldehyde,chloroform,benzene and toluene were 100,100,100,and 100 mg/L,respectively.Furthermore,it is proved that the discharge area is independent of the degradation rate.Through the analysis of the mechanism,it is found that·OH is an important factor affecting the degradation rate of pollutants in model coal-fired flue gas spraying wastewater.
文摘This paper introduced the research background and technical features of Baosteel' s sintering flue gas desulfurization (FGD). It was also named swirl-jet-absorbing wet limestone-gypsum sintering FGD technology. By means of industrial online pilot plants, through continuous running and orthogonal tests, the effects of various influencing factors on SO2 removal efficiency of Baosteel sintering flue gas desulgurization (BSFGD) were studied carefully. The results indicate that the slurry pH value,temperature (T) and flow rate (Q) of inlet flue gas,liquid level (H) in the absorber and flue gas jet velocity (V) are the main influencing factors. Furthermore, when pH is between 5.0 and 5.5, H is between 4.2 m and 4.3 m, Q is 43 000 m3/h, T is below 65℃ and V is between 20 m/s and 28 m/s, the best desulfurization efficiency can be available.
基金supported by the Shaanxi Province Science Foundation for Youths(Grant No.2023-JC-QN-0202)the Technology Innovation Center for Land Engineering and Human Settlements(Grant No.201912131-D2)+1 种基金the Shaanxi Province Key Research and Development Projects(Grant No.2022ZDLNY02-07)the“Young Talent Starting Fund”,and“Human Environment Improvements and Resources Utilization in Rural Areas”Research Projects of Xi’an Jiaotong University(Grant No.202012435).
文摘Land application of anaerobic digestion(AD)effluent as a fertilizer is desirable for nutrient recycling,but often supplies excess phosphorus(P),which contributes to surface water eutrophication.Reducing the P content in AD effluent filtrate using calcium(Ca)treatment prior to land application is a potential strategy for improving effluent disposal and meeting the discharge standard.This study took flue gas desulphurization(FGD)gypsum,a by-product of coal-fired power plants,as a low-cost Ca source,and combined with traditional phosphorus removal agents to achieve high phosphorus removal efficiency with less chemical cost.As the results showed,FGD gypsum dosages of 20 mmol/L Ca(3.44 g/L)and 40 mmol/L Ca(6.89 g/L)removed up to 97.1%of soluble P(initially 102.8 mg/L)within 60-90 minutes.Combining FGD gypsum treatment with traditional chemical treatments using calcium hydroxide[Ca(OH)2]or ferric chloride(FeCl3)could achieve>99%P removal with reduced chemical costs.This study demonstrated that FGD gypsum is an efficient calcium-based precipitant for phosphorus removal,offering a cost-effective and sustainable approach to enhance wastewater treatment practices and meet discharge standards in wastewater management.
基金supported by the National Key Technologies R&D Program(Grant No.2019YFC1907000)the National Natural Science Foundation of China(Grant No.42030807)+1 种基金the Key Research and Development Program of Hubei Province(Grant No.2020BCA076)the Program for HUST Academic Frontier Youth Team(Grant No.2018QYTD05)。
文摘A new type of internally illuminated honeycomb photoreactor was designed. The honeycomb catalyst prepared by using Cedoped TiO2 with 1%–2% vanadium and tungsten was employed for mercury removal from simulated industrial flue gas. The adsorption kinetics in the reaction process were studied. The results showed that the internally illuminated honeycomb photoreactor had good mercury removal performance. When the temperature was 25℃ and the ultraviolet(UV) light intensity reached 80 μW/cm2, the mercury removal efficiency reached 92.5%. The mercury removal efficiency increased significantly with the doping ratio of Ce. XPS analysis showed that the oxidation state of Ce changed from 4 to 3 in the mercury removal reaction and produced lattice oxygen, which acts as an oxidant. O2 can promote mercury removal by honeycomb catalysts;SO2 and HCl also had positive effects, while NO had an inhibitory effect on mercury removal. Kinetic research in the reaction process showed that the quasi-first-order dynamic model had good fitting results, and the correlation coefficients of the fitting results for multiple sets of experimental data were more than 0.999.
文摘The corrosion condition of flue gas desulfurization (FGD) equipment for the coal-fired power plant was defined as the strong corrosion grade. The lining system of hybrid polymer composite was used in internal cylinder of steel chimney, and a corrosion-resistant and heat-resistant protective layer was formed on the metal surface. The corrosion-resistant and ageing-resistant properties of hybrid polymer composite prepared at low temperature after four years of practical use were investigated by differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and measurement of gravimetric variation, contact angle, abrasion resistance, bonding strength and tensile strength. The properties of hybrid polymer composites prepared at 25℃ and –15℃ were comparatively analyzed in the paper.
基金Financial support for this work by the National Key Research and Development Program of China(Grant No.2017YFB0602102)。
文摘For the improvement of reheat steam quality and performance of double reheat coal-fired utility boiler under wide load operation, a variety of temperature regulation ways were utilized to adjust the energy distribution between different heating surfaces. In this paper, thermodynamic calculation based on the fundamental heat transfer theory was conducted for the analysis of temperature regulation strategy effects to steam temperature. In consideration of the specific overlapping heating surface arrangement, the compartment model was adopted to solve this problem. Response surface methodology(RSM) was used to analysis the effect of each temperature regulating variables on the steam temperature and boiler efficiency;then the polynomial model was fitted to predict the primary and secondary steam temperature simultaneously. Results showed that the flue gas recirculation rate has a relatively significant influence on the steam temperature, the maximum temperature deviation between fitting value and calculation value is 3.85℃ in 75% THA;the quadratic model can well predict the steam temperature under different operation conditions in wide load change. The variation of flue gas baffle has a significant influence on the boiler efficiency, compared to the flue gas recirculation and angle of burner oscillation. The influence of various factors on the reheat steam temperature is flue gas baffle > flue gas recirculation > angle of burner oscillation.
文摘Reduction of NO2 with CO in the presence of NO and excess oxygen, a model mixture for flue gas, over a 0.1% Pt/SiO2 catalyst was studied. The related reaction mechanisms, such as oxidation of CO and NO, were discussed. It was found that there was a narrow temperature window (180-190 ℃) for the reduction of NO2 by CO. When the temperature was lower than the lower limit of the window, the reduction hardly occurred, while when the temperature was higher than the upper limit of the window, the direct oxidation of CO by O2 occurred and thereby NO2 could not be effectively reduced by CO. The presence of NO shifted the window to higher temperatures owing to the inhibition effect of NO on the activation of O2 on Pt, which made it possible to reduce NO2 by CO in flue gas.