Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved i...Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved in water.Visible light generates different types of radicals from COFs,and superoxide radicals break N=N bonds in dye molecules,resulting in 100%degradation of azo dyes within 1 h.In contrast,these dyes cannot be degraded by conventionally used photocatalysts,for example,TiO2.Importantly,the COF photocatalysts can be recovered from the dye solutions and re-used to degrade azo dyes for multiple times without loss of degradation efficiency.This work provides an efficient strategy to degrade synthetic dyes,and we expect that COFs with designable structures may use as new photocatalysts for other important applications.展开更多
Volatile organic compounds (VOCs) are widely used in various industrial processes and generate water pollutions. VOCs removal from raw water is an important task for waterworks to guarantee drinking water security. ...Volatile organic compounds (VOCs) are widely used in various industrial processes and generate water pollutions. VOCs removal from raw water is an important task for waterworks to guarantee drinking water security. The removal of VOCs such as chlorobenzene (CB) and ethylbenzene (EB) from raw water by air stripping was investigated under various conditions, inciuding the variation of temperature (5-30~C), pH (3.5-10.5), and air/water ratio (10-60). The air stripping removal efficiency of VOCs decreased with VOCs concentration declining in water. And Henry's law constant was demonstrated as an indicator of the estimation of VOCs removal efficiency for air stripping. The effects of temperature and the ratio of air and water were found to play a great role in VOCs removal, but the effect of pH seemed to be negligible. This study demonstrates that air stripping provides a promising opportunity in removing VOCs in drinking water treatment, especially for the relatively high concentration of VOCs.展开更多
The coexistence of inorganic and organic contaminants is a challenge for real-life water treatment applications.Therefore,in this research,we used NH_2-MIL-125(Ti)to evaluate the single adsorption of hexavalent chromi...The coexistence of inorganic and organic contaminants is a challenge for real-life water treatment applications.Therefore,in this research,we used NH_2-MIL-125(Ti)to evaluate the single adsorption of hexavalent chromium(Cr(Ⅵ))or Rhodamine B(RhB)in an aqueous solution and further investigate simultaneous adsorption experiments to compare the adsorption behavior changes.The main influencing factors,for example,reaction time,initial concentration,reaction temperature,and pH were studied in detail.In all reaction systems,the pseudo-second-order kinetic and Langmuir isotherm models were well illuminated the adsorption progress of Cr(Ⅵ)and RhB.Thermodynamic studies showed that the adsorption process was spontaneous and endothermic.As compared to the single system,the adsorption capacity of Cr(Ⅵ)in the binary system gradually decreased as the additive amount of RhB increased,whereas the adsorption capacity of RhB in the binary system was expanded brilliantly.When the binary reaction system contained 100 mg/L Cr(Ⅵ),the removal rate of RhB increased to 97.58%.The formation of Cr(Ⅵ)-RhB and Cr(Ⅲ)-RhB complexes was the cause that provided facilitation for the adsorption of RhB.These findings prove that the interactions during the water treatment process between contaminants may obtain additional benefits,contributing to a better adsorption capacity of co-existing contaminant.展开更多
In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus ...In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .展开更多
A heteropore covalent organic framework(COF) integrating tetraphenylethene skeleton and catechol segment is designed and synthesized.It exhibits extremely high stability in water under different pH conditions,which ma...A heteropore covalent organic framework(COF) integrating tetraphenylethene skeleton and catechol segment is designed and synthesized.It exhibits extremely high stability in water under different pH conditions,which makes it an excellent material for adsorptive removal of Cd(Ⅱ) from aqueous solutions with very fast adsorption kinetics,high uptake capacity,and good recyclability.展开更多
Efficient removal of non-biodegradable and hazardous dyes from wastewater remains a hot research topic.Herein,a rationally designed a Cu(Ⅱ)-based metal–organic gel(Cu-MOG)with a nanoporous 3 D network structure prep...Efficient removal of non-biodegradable and hazardous dyes from wastewater remains a hot research topic.Herein,a rationally designed a Cu(Ⅱ)-based metal–organic gel(Cu-MOG)with a nanoporous 3 D network structure prepared via a simple one-step mixing method was successfully employed for the removal of cationic dyes.The Cu-MOG exhibited high efficiency,with an adsorption capacity of up to 650.32 mg/g,and rapid adsorption efficiency,with the ability to adsorb 80%of Neutral Red within 1 min.The high adsorption efficiency was attributed to its large specific surface area,which enabled it to massively bind cationic dyes through electrostatic interaction,and a nanoporous structure that promoted intra-pore diffusion.Remarkably,the Cu-MOG displayed size-selective adsorption,based on adsorption studies concerning dyes of different sizes as calculated by density functional theory.Additionally,the adsorption performance of the Cu-MOG still maintained removal efficiency of 100%after three regeneration cycles.These results suggested that the Cu-MOG could be expected to be a promising and competitive candidate to conveniently process wastewater.展开更多
We report the preparation of poly(3,4-ethylene dioxythiophene)(PEDOT)-modified polyvinylidene fluoride electrospun fibers and their use as a novel adsorbent material for the removal of the anionic dye Methyl Orange(MO...We report the preparation of poly(3,4-ethylene dioxythiophene)(PEDOT)-modified polyvinylidene fluoride electrospun fibers and their use as a novel adsorbent material for the removal of the anionic dye Methyl Orange(MO)from aqueous media.This novel adsorbent material can be used to selectively remove MO on a wide p H range(3.0-10.0),with a maximum capacity of 143.8 mg/g at p H 3.0.When used in a recirculating filtration system,the maximum absorption capacity was reached in a shorter time(20 min)than that observed for batch mode experiments(360 min).Based on the analyses of the kinetics and adsorption isotherm data,one can conclude that the predominant mechanism of interaction between the membrane and the dissolved dye molecules is electrostatic.Besides,considering the estimated values for the Gibbs energy,and entropy and enthalpy changes,it was established that the adsorption process is spontaneous and occurs in an endothermic manner.The good mechanical and environmental stability of these membranes allowed their use in at least 20 consecutive adsorption/desorption cycles,without significant loss of their characteristics.We suggest that the physical-chemical characteristics of PEDOT make these hybrid mats a promising adsorbent material for use in water remediation protocols and effluent treatment systems.展开更多
基金financially supported by the National Science Fund for Distinguished Young Scholars (21825803)the Program of Excellent Innovation Teams of Jiangsu Higher Education Institutions and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved in water.Visible light generates different types of radicals from COFs,and superoxide radicals break N=N bonds in dye molecules,resulting in 100%degradation of azo dyes within 1 h.In contrast,these dyes cannot be degraded by conventionally used photocatalysts,for example,TiO2.Importantly,the COF photocatalysts can be recovered from the dye solutions and re-used to degrade azo dyes for multiple times without loss of degradation efficiency.This work provides an efficient strategy to degrade synthetic dyes,and we expect that COFs with designable structures may use as new photocatalysts for other important applications.
基金National High Technology Research and Development Program of China(863 program)(No.2008AA06A414)Major Science and Technology Proyran for Water Pollution Control and Treatment,China(No.2008ZX07421-003)
文摘Volatile organic compounds (VOCs) are widely used in various industrial processes and generate water pollutions. VOCs removal from raw water is an important task for waterworks to guarantee drinking water security. The removal of VOCs such as chlorobenzene (CB) and ethylbenzene (EB) from raw water by air stripping was investigated under various conditions, inciuding the variation of temperature (5-30~C), pH (3.5-10.5), and air/water ratio (10-60). The air stripping removal efficiency of VOCs decreased with VOCs concentration declining in water. And Henry's law constant was demonstrated as an indicator of the estimation of VOCs removal efficiency for air stripping. The effects of temperature and the ratio of air and water were found to play a great role in VOCs removal, but the effect of pH seemed to be negligible. This study demonstrates that air stripping provides a promising opportunity in removing VOCs in drinking water treatment, especially for the relatively high concentration of VOCs.
基金supported by the National Natural Science Foundation of China (No.31971508)the National Key R&D Program of China (No.2018YFC1902105)the Fundamental Research Funds for the Central Universities (No.JUSRP22005)。
文摘The coexistence of inorganic and organic contaminants is a challenge for real-life water treatment applications.Therefore,in this research,we used NH_2-MIL-125(Ti)to evaluate the single adsorption of hexavalent chromium(Cr(Ⅵ))or Rhodamine B(RhB)in an aqueous solution and further investigate simultaneous adsorption experiments to compare the adsorption behavior changes.The main influencing factors,for example,reaction time,initial concentration,reaction temperature,and pH were studied in detail.In all reaction systems,the pseudo-second-order kinetic and Langmuir isotherm models were well illuminated the adsorption progress of Cr(Ⅵ)and RhB.Thermodynamic studies showed that the adsorption process was spontaneous and endothermic.As compared to the single system,the adsorption capacity of Cr(Ⅵ)in the binary system gradually decreased as the additive amount of RhB increased,whereas the adsorption capacity of RhB in the binary system was expanded brilliantly.When the binary reaction system contained 100 mg/L Cr(Ⅵ),the removal rate of RhB increased to 97.58%.The formation of Cr(Ⅵ)-RhB and Cr(Ⅲ)-RhB complexes was the cause that provided facilitation for the adsorption of RhB.These findings prove that the interactions during the water treatment process between contaminants may obtain additional benefits,contributing to a better adsorption capacity of co-existing contaminant.
文摘In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .
基金National Natural Science Foundation of China(No.21725404)Shanghai Scientific and Technological Innovation Project(No.18JC1410600)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB20000000)financial support。
文摘A heteropore covalent organic framework(COF) integrating tetraphenylethene skeleton and catechol segment is designed and synthesized.It exhibits extremely high stability in water under different pH conditions,which makes it an excellent material for adsorptive removal of Cd(Ⅱ) from aqueous solutions with very fast adsorption kinetics,high uptake capacity,and good recyclability.
基金supported by the National Natural Science Foundation of China (No. 21575117)
文摘Efficient removal of non-biodegradable and hazardous dyes from wastewater remains a hot research topic.Herein,a rationally designed a Cu(Ⅱ)-based metal–organic gel(Cu-MOG)with a nanoporous 3 D network structure prepared via a simple one-step mixing method was successfully employed for the removal of cationic dyes.The Cu-MOG exhibited high efficiency,with an adsorption capacity of up to 650.32 mg/g,and rapid adsorption efficiency,with the ability to adsorb 80%of Neutral Red within 1 min.The high adsorption efficiency was attributed to its large specific surface area,which enabled it to massively bind cationic dyes through electrostatic interaction,and a nanoporous structure that promoted intra-pore diffusion.Remarkably,the Cu-MOG displayed size-selective adsorption,based on adsorption studies concerning dyes of different sizes as calculated by density functional theory.Additionally,the adsorption performance of the Cu-MOG still maintained removal efficiency of 100%after three regeneration cycles.These results suggested that the Cu-MOG could be expected to be a promising and competitive candidate to conveniently process wastewater.
文摘We report the preparation of poly(3,4-ethylene dioxythiophene)(PEDOT)-modified polyvinylidene fluoride electrospun fibers and their use as a novel adsorbent material for the removal of the anionic dye Methyl Orange(MO)from aqueous media.This novel adsorbent material can be used to selectively remove MO on a wide p H range(3.0-10.0),with a maximum capacity of 143.8 mg/g at p H 3.0.When used in a recirculating filtration system,the maximum absorption capacity was reached in a shorter time(20 min)than that observed for batch mode experiments(360 min).Based on the analyses of the kinetics and adsorption isotherm data,one can conclude that the predominant mechanism of interaction between the membrane and the dissolved dye molecules is electrostatic.Besides,considering the estimated values for the Gibbs energy,and entropy and enthalpy changes,it was established that the adsorption process is spontaneous and occurs in an endothermic manner.The good mechanical and environmental stability of these membranes allowed their use in at least 20 consecutive adsorption/desorption cycles,without significant loss of their characteristics.We suggest that the physical-chemical characteristics of PEDOT make these hybrid mats a promising adsorbent material for use in water remediation protocols and effluent treatment systems.