Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans...Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.展开更多
Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous st...Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous studies,the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model,which did not take non-linear effects of vessel elastic deformation into consideration.In this study,with an elastic tube model,we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to the measured inner diameter,center-line blood flow velocity,heart rates and the brachial blood pressures before and after exercise training.Furthermore,the roles of exerciseinduced arterial diameter and blood flow rate in the change of WSS were also determined.The numerical results demonstrate that acute exercise significantly increases the magnitudes of blood flow rate and WSS.Moreover,the vessel elastic deformation is a non-negligible factor in the calculation of the WSS induced by exercise,which generates greater effects on the minimum WSS than the maximum WSS.Additionally,the contributions of exercise-induced variations in blood flow rate and diameter are almost identical in the change of the mean WSS.展开更多
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically...Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.展开更多
Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of ...Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of prototype buildings.To study the effect of the moment-shear force interaction on the seismic performance of shear walls,three identical 2-story shear wall specimens with different loading patterns were constructed at 1/2 scale,to represent the lower portion of an 11-story high-rise building,and were tested under reversed cyclic loads.The axial force,shear force and bending moment were simultaneously applied to simulate the effects of gravity loads and earthquake excitations on the prototype.The axial force and bending moment delivered from the upper structure were applied to the top of the specimens by two vertical actuators,and the shear force was applied to the specimens by two horizontal actuators.A mixed force-displacement control test program was adopted to ensure that the bending moment and the lateral shear were increased proportionally.The experimental results show that the moment-shear force interaction had a significant effect on the failure pattern,hysteretic characteristics,ductility and energy dissipation of the specimens.It is recommended that moment-shear force interaction should be considered in the loading condition of RC shear wall substructures cyclic tests.展开更多
Through the test of 8 RC shear wall specimens and computer analysis ofstrains of steel bars with keyways in the specimens,the authors have studied the remains oftensile stress of concrete between cracks after concrete...Through the test of 8 RC shear wall specimens and computer analysis ofstrains of steel bars with keyways in the specimens,the authors have studied the remains oftensile stress of concrete between cracks after concrete cracking and put forward a formulato calculate coefficient Ψ,the ununiform distribution factor of steel strain.This coefficientcan be used to modify the calculated steel strain in cracked zone,so as to make the resultsof using finite clement method to analyze shear walls more accurate.展开更多
Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial syste...Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial system. Limitation in available flow chambers with a constant WSSG in the testing region makes it difficult to quantify cellular responses to WSSG. The current study proposes and characterizes a type of converging parallel plate flow chamber (PPFC) featuring a constant gradient of WSS. A simple formula was derived for the curvature of side walls, which relates WSSG to flow rate (Q), height of the PPFC (h), length of the convergent section (L), its widths at the entrance (w0) and exit (w1). CFD simulation of flow in the chamber is carried out. Constant WSSG is observed in most regions of the top and bottom plates except those in close proximity of side walls. A change in Q or h induces equally proportional changes in WSS and WSSG whereas an alteration in the ratio between w0 and w1 results in a more significant change in WSSG than that in WSS. The current design makes possible an easy quantification of WSSG on endothelial cells in the flow chamber.展开更多
Smart materials have found numerous applications in many areas in civil engineering recently. One class of these materials is shape memory alloy (SMA) which exhibits several unique characteristics such as superelastic...Smart materials have found numerous applications in many areas in civil engineering recently. One class of these materials is shape memory alloy (SMA) which exhibits several unique characteristics such as superelasticity and shape memory effect. Due to these characteristics, research efforts have been extended to use SMA in controlling civil structures. This paper investigates the effectiveness of SMA reinforcements in enhancing the behavior of shear walls, especially when subjected to seismic excitations. Two ordinary and coupled shear walls were introduced as reference structures and were modeled by ABAQUS software. For improving the seismic response of the shear walls, vertical SMA reinforcing bars were proposed to be implemented like conventional steel reinforcements, throughout the height of the structures and in every connecting beam in the coupled shear wall system. The one dimensional superelastic model of SMA material was implemented in the computer software using FORTRAN code. The dynamic response of the shear walls subjected to seismic loading was investigated through time history analyses under El-centro and Koyna records. The results showed that using superelastic SMA material instead of steel bars caused remarkable reduction in residual displacement for both ordinary and coupled shear walls. In addition, SMA reinforcements could significantly decrease the maximum deflection of the coupled shear wall system.展开更多
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake...The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.展开更多
Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ...Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.展开更多
Wall cracking and mold expanding due to concrete vibrations can be effectively solved through the application of precast normal-concrete composite shear walls infilled with self-compacting concrete(SCC). However, the ...Wall cracking and mold expanding due to concrete vibrations can be effectively solved through the application of precast normal-concrete composite shear walls infilled with self-compacting concrete(SCC). However, the high liquidity of SCC will induce a higher lateral pressure. Therefore, it is important to obtain a better understanding of the template lateral pressure. In this work, nine composite shear walls were experimentally investigated, focusing on the effects of two parameters, i.e., the casting rate and the section width of the formwork. The time-varying pressure was monitored during the SCC pouring. It is found that the increase of casting rate from 3.2 m/h to 10.3 m/h resulted in a higher maximum lateral pressure. The higher casting rate led to a longer time required for the lateral pressure to drop to a steady value. There was no correlation between the section width and the rate of decrease in the initial formwork pressure and stable value. Based on the test results, a formula considering the effect of casting speed for the calculation of SCC formwork pressure was established to fill the gap in the current standards and for engineering applications.展开更多
Direct numerical simulation of a spatially developing turbulent boundary layer over a compliant wall with anisotropic wall material properties is performed. The Reynolds number varies from 300 to approximately 860 alo...Direct numerical simulation of a spatially developing turbulent boundary layer over a compliant wall with anisotropic wall material properties is performed. The Reynolds number varies from 300 to approximately 860 along the streamwise direction, based on the external flow velocity and the momentum thickness. Eight typical cases are selected for numerical investigation under the guidance of the monoharmonic analysis. The instantaneous flow fields exhibit the traveling wavy motion of the compliant wall, and the frequency-wavenumber power spectrum of wall pressure fluctuation is computed to quantify the mutual influence of the wall compliance and the turbulent flow at different wave numbers. It is shown that the Reynolds shear stress and the pressure fluctuation are generally enhanced by the wall compliance with the parameters considered in the present study. A dynamical decomposition of the skin-friction coefficient is derived, and a new term (CW) appears due to the wall-induced Reynolds shear stress. The influence of the anisotropic compliant wall motion on the turbulent boundary layer through the wall-induced negative Reynolds shear stress is discussed. To elucidate the underlying mechanism, the budget analysis of the Reynolds stresses transportation is further carried out. The impact of the wall compliance on the turbulent flow is disclosed by examining the variations of the diffusion and velocity-pressure correlation terms. It is shown that increase of the Reynolds stresses inside the flow domain is caused by enhancement of the velocity-pressure correlation term, possibly through the long-range influence of the wall compliance on the pressure field, rather than diffusion of the wall-induced Reynolds shear stress into the fluid flow.展开更多
Current research study consists of determining the optimum location of the shear wall to get the maximum structural efficiency of a reinforced concrete frame building. It consists of a detailed analysis and design rev...Current research study consists of determining the optimum location of the shear wall to get the maximum structural efficiency of a reinforced concrete frame building. It consists of a detailed analysis and design review of a seven-story reinforced concrete building to understand the effect of shear wall location on the response of reinforced concrete structures when subjected to different earthquake forces. Three trail locations of shear walls are selected and their performance is monitored in terms of structural response under different lateral loads. Required objectives are achieved by obtaining design and construction drawings of an existing reinforced concrete structure and modeling it on Finite Element Method (FEM) based computer software. The structure is redesigned and discussed with four different configurations (one without shear wall and three with shear walls). Main framing components (Beams, Columns and Shear walls) of the superstructure are designed using SAP 2000 V. 19.0 whereas substructure (foundation) of RC building was?designed using SAFE. American Concrete Institute (ACI) design specifications were used to calculate the cracked section stiffness or non-linear geometrical properties of the cracked section. Uniform Building Code (UBC-97) procedures were adopted to calculate the lateral earthquake loading on the structures. Structural response of the building was monitored at each story level for each earthquake force zone described by the UBC-97. The earthquake lateral forces were considered in both X and Y direction of the building. Each configuration of shear wall is carefully analyzed and effect of its location is calibrated by the displacement response of the structure. Eccentricity to the lateral stiffness of the building is imparted by changing the location of shear walls. Results of the study have shown that the location of shear wall significantly affects the lateral response of the structure under earthquake forces. It also motivates to carefully decide the center of lateral stiffness of building prior to deciding the location of shear walls.展开更多
A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall)...A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall). In this study, five 2438 mm by 2438 mm specimens were tested under in-plane cyclic racking loading following the CUREE loading protocol for light-frame wall systems. Three specimens were finished using non-cement based joint compound while the other two used cement based joint compound. Based on the experimental testing of the specimens, the results show that the use of cement based joint compound on drywall joints produces higher shear capacity for the wall system as compared to similar specimens finished with conventional non-cement based joint compound. The result of the study is particularly important for high seismic regions where interior stud walls in residential construction effectively take part in seismic resistance even though wood shear walls are normally used on exterior walls.展开更多
The behavior of wall shear stress (WSS) was previously reported in a deformable aneurysm model using fluid-structure interactions. However, these findings have not been validated. In the present study, we examined the...The behavior of wall shear stress (WSS) was previously reported in a deformable aneurysm model using fluid-structure interactions. However, these findings have not been validated. In the present study, we examined the effect of elasticity (i.e., deformation) on wall shear stress inside a cerebral aneurysm at the apex of a bifurcation using particle image velocimetry in vitro. The flow model simulated a human patient-specific aneurysm at the apex of the bifurcation of the middle cerebral artery. Flow characteristics by wall elasticity were examined for both elastic and non-deformable aneurysm models with pulsatile blood flow. The absolute temporally- and spatially-averaged WSS along the bleb wall was smaller in the elastic model than that in the non-deformable model. This small WSS may be related to attenuation of the WSS. Further, the WSS gradient had a finite value near the stagnation point of the aneurysm dome. Finally, the WSS gradient near the stagnation point was slightly smaller in the elastic model than that in the non-deformable model. These data suggest that elasticity of the aneurysm wall can affect the progression and rupture of aneurysms via hemodynamic stress.展开更多
Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This...Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design.展开更多
The objective of the present study is to explore the relation between the near-wall vortices and the shear stress on the wall in two-dimensional channel flows. A direct numerical simulation of an incompressible two-di...The objective of the present study is to explore the relation between the near-wall vortices and the shear stress on the wall in two-dimensional channel flows. A direct numerical simulation of an incompressible two-dimensional turbulent channel flow is performed with spectral method and the results are used to examine the relation between wall shear stress and near-wall vortices. The two-point correlation results indicate that the wall shear stress is associated with the vortices near the wall and the maximum correlation-value location of the near-wall vortices is obtained. The analysis of the instantaneous diagrams of fluctuation velocity vectors provides a further expression for the above conclusions. The results of this research provide a useful supplement for the control of turbulent boundary layers.展开更多
Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations betwee...Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations between hemodynamic parameters and the formation and growth of intracranial aneurysms, the present study constructed a computational model of a case with an internal carotid artery aneurysm and an anterior communicating artery aneurysm, based on the CT angiography findings of a patient. To simulate the formation of the anterior communicating artery aneurysm and the growth of the internal carotid artery aneurysm, we then constructed a model that virtually removed the anterior communicating artery aneurysm, and a further two models that also progressively decreased the size of the internal carotid artery aneurysm. Computational simulations of the fluid dynamics of the four models were performed under pulsatile flow conditions, and wall shear stress was compared among the different models. In the three aneurysm growth models, increasing size of the aneurysm was associated with an increased area of low wall shear stress, a significant decrease in wall shear stress at the dome of the aneurysm, and a significant change in the wall shear stress of the parent artery. The wall shear stress of the anterior communicating artery remained low, and was significantly lower than the wall shear stress at the bifurcation of the internal carotid artery or the bifurcation of the middle cerebral artery. After formation of the anterior communicating artery aneurysm, the wall shear stress at the dome of the internal carotid artery aneurysm increased significantly, and the wall shear stress in the upstream arteries also changed significantly. These findings indicate that low wall shear stress may be associated with the initiation and growth of aneurysms, and that aneurysm formation and growth may influence hemodynamic parameters in the local and adjacent arteries.展开更多
In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wa...In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wall structure, the construction level of reinforced concrete can be continuously improved, the construction quality can be guaranteed, and the construction project can be successfully completed, which is worthy of extensive application and promotion in construction enterprises, thus providing a broader development space for construction enterprises.展开更多
Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial r...Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial residual stress measurement of layer removal method. According to initial residual stress experiment for casting ZL205 A aluminum alloy tapered thin-walled blank by a common method,namely hole-drilling method,three finite element models with initial residual stress are established to simulate the layer removal method in ABAQUS and ANSYS software. By analyzing the results of simulation and experiments,the cutting residual stress inlayer removal process has a significant effect on measurement results. Reducing cutting residual stress is helpful to improve accuracy of layer removal method.展开更多
A new type of ductile lowrise shearwall with many short horizontalkeyways is proposed in this paper in order to improve the earthquake resistant behav-ior of ordinary lowrise shearwall.The behavior of this wall is stu...A new type of ductile lowrise shearwall with many short horizontalkeyways is proposed in this paper in order to improve the earthquake resistant behav-ior of ordinary lowrise shearwall.The behavior of this wall is studied through low-frequency cyclic loading test.Based on the test results,the paper puts forward thedifferent restoring force models for different lowrise shearwalls,and a program fortheir nonlinear dynamic analysis is worked out.Thr(?)h directly inputting earth-quake waves,the paper analyses the dynamic response and energy dissipation of 3types of lowrise shearwalls.The calculation results dem(?)strate that the newly de-vised ductile shearwall has good earthquake resistant behavior.展开更多
文摘Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.
基金The research described in this paper was supported in part by the National Natural Science Foundation of China(Grant No.31370948,11672065).
文摘Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous studies,the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model,which did not take non-linear effects of vessel elastic deformation into consideration.In this study,with an elastic tube model,we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to the measured inner diameter,center-line blood flow velocity,heart rates and the brachial blood pressures before and after exercise training.Furthermore,the roles of exerciseinduced arterial diameter and blood flow rate in the change of WSS were also determined.The numerical results demonstrate that acute exercise significantly increases the magnitudes of blood flow rate and WSS.Moreover,the vessel elastic deformation is a non-negligible factor in the calculation of the WSS induced by exercise,which generates greater effects on the minimum WSS than the maximum WSS.Additionally,the contributions of exercise-induced variations in blood flow rate and diameter are almost identical in the change of the mean WSS.
文摘Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2019B05the Heilongjiang Provincial Natural Science Foundation of China under Grant No.LH2019E098,the National Natural Science Foundation of China under Grant Nos.51878631 and 51678544the National Key Research and Development Program of China under Grant Nos.2017YFC1500605 and 2018YFC1504602-01。
文摘Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of prototype buildings.To study the effect of the moment-shear force interaction on the seismic performance of shear walls,three identical 2-story shear wall specimens with different loading patterns were constructed at 1/2 scale,to represent the lower portion of an 11-story high-rise building,and were tested under reversed cyclic loads.The axial force,shear force and bending moment were simultaneously applied to simulate the effects of gravity loads and earthquake excitations on the prototype.The axial force and bending moment delivered from the upper structure were applied to the top of the specimens by two vertical actuators,and the shear force was applied to the specimens by two horizontal actuators.A mixed force-displacement control test program was adopted to ensure that the bending moment and the lateral shear were increased proportionally.The experimental results show that the moment-shear force interaction had a significant effect on the failure pattern,hysteretic characteristics,ductility and energy dissipation of the specimens.It is recommended that moment-shear force interaction should be considered in the loading condition of RC shear wall substructures cyclic tests.
文摘Through the test of 8 RC shear wall specimens and computer analysis ofstrains of steel bars with keyways in the specimens,the authors have studied the remains oftensile stress of concrete between cracks after concrete cracking and put forward a formulato calculate coefficient Ψ,the ununiform distribution factor of steel strain.This coefficientcan be used to modify the calculated steel strain in cracked zone,so as to make the resultsof using finite clement method to analyze shear walls more accurate.
文摘Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial system. Limitation in available flow chambers with a constant WSSG in the testing region makes it difficult to quantify cellular responses to WSSG. The current study proposes and characterizes a type of converging parallel plate flow chamber (PPFC) featuring a constant gradient of WSS. A simple formula was derived for the curvature of side walls, which relates WSSG to flow rate (Q), height of the PPFC (h), length of the convergent section (L), its widths at the entrance (w0) and exit (w1). CFD simulation of flow in the chamber is carried out. Constant WSSG is observed in most regions of the top and bottom plates except those in close proximity of side walls. A change in Q or h induces equally proportional changes in WSS and WSSG whereas an alteration in the ratio between w0 and w1 results in a more significant change in WSSG than that in WSS. The current design makes possible an easy quantification of WSSG on endothelial cells in the flow chamber.
文摘Smart materials have found numerous applications in many areas in civil engineering recently. One class of these materials is shape memory alloy (SMA) which exhibits several unique characteristics such as superelasticity and shape memory effect. Due to these characteristics, research efforts have been extended to use SMA in controlling civil structures. This paper investigates the effectiveness of SMA reinforcements in enhancing the behavior of shear walls, especially when subjected to seismic excitations. Two ordinary and coupled shear walls were introduced as reference structures and were modeled by ABAQUS software. For improving the seismic response of the shear walls, vertical SMA reinforcing bars were proposed to be implemented like conventional steel reinforcements, throughout the height of the structures and in every connecting beam in the coupled shear wall system. The one dimensional superelastic model of SMA material was implemented in the computer software using FORTRAN code. The dynamic response of the shear walls subjected to seismic loading was investigated through time history analyses under El-centro and Koyna records. The results showed that using superelastic SMA material instead of steel bars caused remarkable reduction in residual displacement for both ordinary and coupled shear walls. In addition, SMA reinforcements could significantly decrease the maximum deflection of the coupled shear wall system.
基金supported by the National Natural Science Foundation of China(Grant Nos.42377182,52079133 and 41931295).
文摘The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.
基金National Key Research and Development Program of China under Grant No.2018YFC0705602。
文摘Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.
基金Funded by the National Natural Science Foundation of China(No.51178218)the Cooperation Project of Yangzhou Science and Technology Bureau(YZ2016267)
文摘Wall cracking and mold expanding due to concrete vibrations can be effectively solved through the application of precast normal-concrete composite shear walls infilled with self-compacting concrete(SCC). However, the high liquidity of SCC will induce a higher lateral pressure. Therefore, it is important to obtain a better understanding of the template lateral pressure. In this work, nine composite shear walls were experimentally investigated, focusing on the effects of two parameters, i.e., the casting rate and the section width of the formwork. The time-varying pressure was monitored during the SCC pouring. It is found that the increase of casting rate from 3.2 m/h to 10.3 m/h resulted in a higher maximum lateral pressure. The higher casting rate led to a longer time required for the lateral pressure to drop to a steady value. There was no correlation between the section width and the rate of decrease in the initial formwork pressure and stable value. Based on the test results, a formula considering the effect of casting speed for the calculation of SCC formwork pressure was established to fill the gap in the current standards and for engineering applications.
基金the National Natural Science Foundation of China (Grants 11772172 and 11490551).
文摘Direct numerical simulation of a spatially developing turbulent boundary layer over a compliant wall with anisotropic wall material properties is performed. The Reynolds number varies from 300 to approximately 860 along the streamwise direction, based on the external flow velocity and the momentum thickness. Eight typical cases are selected for numerical investigation under the guidance of the monoharmonic analysis. The instantaneous flow fields exhibit the traveling wavy motion of the compliant wall, and the frequency-wavenumber power spectrum of wall pressure fluctuation is computed to quantify the mutual influence of the wall compliance and the turbulent flow at different wave numbers. It is shown that the Reynolds shear stress and the pressure fluctuation are generally enhanced by the wall compliance with the parameters considered in the present study. A dynamical decomposition of the skin-friction coefficient is derived, and a new term (CW) appears due to the wall-induced Reynolds shear stress. The influence of the anisotropic compliant wall motion on the turbulent boundary layer through the wall-induced negative Reynolds shear stress is discussed. To elucidate the underlying mechanism, the budget analysis of the Reynolds stresses transportation is further carried out. The impact of the wall compliance on the turbulent flow is disclosed by examining the variations of the diffusion and velocity-pressure correlation terms. It is shown that increase of the Reynolds stresses inside the flow domain is caused by enhancement of the velocity-pressure correlation term, possibly through the long-range influence of the wall compliance on the pressure field, rather than diffusion of the wall-induced Reynolds shear stress into the fluid flow.
文摘Current research study consists of determining the optimum location of the shear wall to get the maximum structural efficiency of a reinforced concrete frame building. It consists of a detailed analysis and design review of a seven-story reinforced concrete building to understand the effect of shear wall location on the response of reinforced concrete structures when subjected to different earthquake forces. Three trail locations of shear walls are selected and their performance is monitored in terms of structural response under different lateral loads. Required objectives are achieved by obtaining design and construction drawings of an existing reinforced concrete structure and modeling it on Finite Element Method (FEM) based computer software. The structure is redesigned and discussed with four different configurations (one without shear wall and three with shear walls). Main framing components (Beams, Columns and Shear walls) of the superstructure are designed using SAP 2000 V. 19.0 whereas substructure (foundation) of RC building was?designed using SAFE. American Concrete Institute (ACI) design specifications were used to calculate the cracked section stiffness or non-linear geometrical properties of the cracked section. Uniform Building Code (UBC-97) procedures were adopted to calculate the lateral earthquake loading on the structures. Structural response of the building was monitored at each story level for each earthquake force zone described by the UBC-97. The earthquake lateral forces were considered in both X and Y direction of the building. Each configuration of shear wall is carefully analyzed and effect of its location is calibrated by the displacement response of the structure. Eccentricity to the lateral stiffness of the building is imparted by changing the location of shear walls. Results of the study have shown that the location of shear wall significantly affects the lateral response of the structure under earthquake forces. It also motivates to carefully decide the center of lateral stiffness of building prior to deciding the location of shear walls.
文摘A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall). In this study, five 2438 mm by 2438 mm specimens were tested under in-plane cyclic racking loading following the CUREE loading protocol for light-frame wall systems. Three specimens were finished using non-cement based joint compound while the other two used cement based joint compound. Based on the experimental testing of the specimens, the results show that the use of cement based joint compound on drywall joints produces higher shear capacity for the wall system as compared to similar specimens finished with conventional non-cement based joint compound. The result of the study is particularly important for high seismic regions where interior stud walls in residential construction effectively take part in seismic resistance even though wood shear walls are normally used on exterior walls.
文摘The behavior of wall shear stress (WSS) was previously reported in a deformable aneurysm model using fluid-structure interactions. However, these findings have not been validated. In the present study, we examined the effect of elasticity (i.e., deformation) on wall shear stress inside a cerebral aneurysm at the apex of a bifurcation using particle image velocimetry in vitro. The flow model simulated a human patient-specific aneurysm at the apex of the bifurcation of the middle cerebral artery. Flow characteristics by wall elasticity were examined for both elastic and non-deformable aneurysm models with pulsatile blood flow. The absolute temporally- and spatially-averaged WSS along the bleb wall was smaller in the elastic model than that in the non-deformable model. This small WSS may be related to attenuation of the WSS. Further, the WSS gradient had a finite value near the stagnation point of the aneurysm dome. Finally, the WSS gradient near the stagnation point was slightly smaller in the elastic model than that in the non-deformable model. These data suggest that elasticity of the aneurysm wall can affect the progression and rupture of aneurysms via hemodynamic stress.
文摘Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design.
文摘The objective of the present study is to explore the relation between the near-wall vortices and the shear stress on the wall in two-dimensional channel flows. A direct numerical simulation of an incompressible two-dimensional turbulent channel flow is performed with spectral method and the results are used to examine the relation between wall shear stress and near-wall vortices. The two-point correlation results indicate that the wall shear stress is associated with the vortices near the wall and the maximum correlation-value location of the near-wall vortices is obtained. The analysis of the instantaneous diagrams of fluctuation velocity vectors provides a further expression for the above conclusions. The results of this research provide a useful supplement for the control of turbulent boundary layers.
基金supported by the National Natural Science Foundation of China, No. 81171109
文摘Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations between hemodynamic parameters and the formation and growth of intracranial aneurysms, the present study constructed a computational model of a case with an internal carotid artery aneurysm and an anterior communicating artery aneurysm, based on the CT angiography findings of a patient. To simulate the formation of the anterior communicating artery aneurysm and the growth of the internal carotid artery aneurysm, we then constructed a model that virtually removed the anterior communicating artery aneurysm, and a further two models that also progressively decreased the size of the internal carotid artery aneurysm. Computational simulations of the fluid dynamics of the four models were performed under pulsatile flow conditions, and wall shear stress was compared among the different models. In the three aneurysm growth models, increasing size of the aneurysm was associated with an increased area of low wall shear stress, a significant decrease in wall shear stress at the dome of the aneurysm, and a significant change in the wall shear stress of the parent artery. The wall shear stress of the anterior communicating artery remained low, and was significantly lower than the wall shear stress at the bifurcation of the internal carotid artery or the bifurcation of the middle cerebral artery. After formation of the anterior communicating artery aneurysm, the wall shear stress at the dome of the internal carotid artery aneurysm increased significantly, and the wall shear stress in the upstream arteries also changed significantly. These findings indicate that low wall shear stress may be associated with the initiation and growth of aneurysms, and that aneurysm formation and growth may influence hemodynamic parameters in the local and adjacent arteries.
文摘In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wall structure, the construction level of reinforced concrete can be continuously improved, the construction quality can be guaranteed, and the construction project can be successfully completed, which is worthy of extensive application and promotion in construction enterprises, thus providing a broader development space for construction enterprises.
基金Supported by the National Natural Science Foundation of China(No.51575014,51505012)Natural Science Foundation of Beijing(No.3154029,KZ201410005010)+2 种基金National Defense Scientific Research Project(No.JCKY2014204B003)Project funded by China Postdoctoral Science Foundation(No.2016M591033)Beijing Postdoctoral Research Foundation(No.2015ZZ-13)
文摘Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial residual stress measurement of layer removal method. According to initial residual stress experiment for casting ZL205 A aluminum alloy tapered thin-walled blank by a common method,namely hole-drilling method,three finite element models with initial residual stress are established to simulate the layer removal method in ABAQUS and ANSYS software. By analyzing the results of simulation and experiments,the cutting residual stress inlayer removal process has a significant effect on measurement results. Reducing cutting residual stress is helpful to improve accuracy of layer removal method.
文摘A new type of ductile lowrise shearwall with many short horizontalkeyways is proposed in this paper in order to improve the earthquake resistant behav-ior of ordinary lowrise shearwall.The behavior of this wall is studied through low-frequency cyclic loading test.Based on the test results,the paper puts forward thedifferent restoring force models for different lowrise shearwalls,and a program fortheir nonlinear dynamic analysis is worked out.Thr(?)h directly inputting earth-quake waves,the paper analyses the dynamic response and energy dissipation of 3types of lowrise shearwalls.The calculation results dem(?)strate that the newly de-vised ductile shearwall has good earthquake resistant behavior.