期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of tourmaline on nitrogen removal performance and biofilm structures in the sequencing batch biofilm reactor 被引量:10
1
作者 Chong Tan Haoran Xu +7 位作者 Di Cui Jinlong Zuo Junsheng Li Yubin Ji Shan Qiu Lin Yao Ying Chen Yingjie Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期127-135,共9页
The effects of tourmaline on nitrogen removal performance and biofilm structures were comparatively investigated in two identical laboratory-scale sequencing batch biofilm reactors(SBBRs)(denoted SBBR1 and SBBR2) ... The effects of tourmaline on nitrogen removal performance and biofilm structures were comparatively investigated in two identical laboratory-scale sequencing batch biofilm reactors(SBBRs)(denoted SBBR1 and SBBR2) at different nitrogen loading rates(NLRs) varying from(0.24 ± 0.01) to(1.26 ± 0.02) g N/(L·day). SBBR1 was operated in parallel with SBBR2, but SBBR1 was filled with polyurethane foam loaded tourmaline(TPU) carriers and another(SBBR2) filled with polyurethane foam(PU) carriers. Results obtained from this study showed that the excellent and stable performance of SBBR1 was obtained. Ammonia nitrogen removal and total nitrogen removal were higher in SBBR1 than that in SBBR2 with increase of NLR. At an NLR of(0.24 ± 0.01) g N/(L·day), the majority of the spherical and elliptical bacteria were surrounded by the extracellular polymeric substance(EPS) and bacillus or filamentous bacteria in two SBBRs biofilms. When NLR increased to(1.26 ± 0.02) g N/(L·day), the clusters were more obvious in the SBBR1 biofilm than that in the SBBR2 biofilm. Bacteria in SBBR1 were inclined to synthesis more EPS, and the formed EPS could protect the bacteria from free ammonia(FA) under extreme condition NLR(1.26 ± 0.02) g N/(L·day). The results of polymerase chain reaction-denaturing gradient gel electrophoresis analysis showed that the microbial community similarity in SBBR2 decreased more obviously than that in SBBR1 with the increase of NLR, which the microbial community in SBBR1 was relatively stable. 展开更多
关键词 TOURMALINE Nitrogen removal performance Biofilm structures Population dynamics Sequencing batch biofilmreactor (SBBR)
原文传递
Removal performance,mechanisms,and influencing factors of biochar for air pollutants:a critical review
2
作者 Zhipeng Zhao Bing Wang +4 位作者 Benny K.G.Theng Xinqing Lee Xueyang Zhang Miao Chen Peng Xu 《Biochar》 SCIE 2022年第1期678-701,共24页
The emission of air pollutants from various industries is a major contributor to environmental pollution.The removal of these pollutants before they are discharged into the environment has become an important means of... The emission of air pollutants from various industries is a major contributor to environmental pollution.The removal of these pollutants before they are discharged into the environment has become an important means of controlling air pollution.Biochar has attracted increasing attention because of its low cost,high porosity,large specific surface area,abundant surface functional groups,and high removal capacity.The physicochemical properties of biochar are greatly affected by feedstock types,preparation,and modification conditions.For this reason,the capacity and propensity of biochar for removing air pollutants are rather variable.To understand the existing research status and grasp the latest research progress,a systematic review on the removal of different air pollutants by biochar is highly needed.Based on the recent research,this paper systematically analyzes and summarizes the preparation and modification methods of biochar commonly used for the removal of six air pollutants(SO_(2),H_(2)S,CO_(2),Hg0,VOCs,and NH_(3)),as well as the removal performance and mechanisms.Then,the potential influencing factors(preparation parameters,physicochemical characteristics of biochar,and removal conditions)are discussed.Finally,the regeneration of biochar,suggestions,and future perspectives are proposed. 展开更多
关键词 BIOCHAR MODIFICATION Air pollutants removal performance removal mechanisms Influencing factors
原文传递
Degradation of dichloromethane by an isolated strain Pandoraea pnomenusa and its performance in a biotrickling filter 被引量:2
3
作者 Jianming Yu Wenji Cai +1 位作者 Zhuowei Cheng Jianmeng Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第5期1108-1117,共10页
A strain Pandoraea pnomenusa LX-1 that uses dichloromethane (DCM) as sole carbon and energy source has been isolated and identified in our laboratory. The optimum aerobic biodegradation of DCM in batch culture was e... A strain Pandoraea pnomenusa LX-1 that uses dichloromethane (DCM) as sole carbon and energy source has been isolated and identified in our laboratory. The optimum aerobic biodegradation of DCM in batch culture was evaluated by response surface methodology. Maximum biodegradation (5.35 mg/(L.hr)) was achieved under cultivation at 32.8℃, pH 7.3, and 0.66% NaC1. The growth and biodegradation processes were well fitted by Haldane's kinetic model, yielding maximum specific growth and degradation rates of 0.133 hr^-1 and 0.856 hr^-1, respectively. The microorganism efficiently degraded a mixture of DCM and coexisting components (benzene, toluene and chlorobenzene). The carbon recovery (52.80%-94.59%) indicated that the targets were predominantly mineralized and incorporated into cell materials. Electron acceptors increased the DCM biodegradation rate in the following order: mixed 〉 oxygen 〉 iron 〉 sulfate 〉 nitrate. The highest dechlorination rate was 0.365 mg C1-/(hr.mg biomass), obtained in the presence of mixed electron acceptors. Removal was achieved in a continuous biotrickling filter at 56%-85% efficiency, with a mineralization rate of 75.2%. Molecular biology techniques revealed the predominant strain as P. pnomenusa LX-1. These results clearly demonstrated the effectiveness of strain LX-1 in treating DCM-containing industrial effluents. As such, the strain is a strong candidate for remediation of DCM coexisting with other organic compounds. 展开更多
关键词 DICHLOROMETHANE Pandoraea pnomenusa biodegradation characteristics removal performance carbon balance
原文传递
Performance of Submerged Membrane Bioreactor for Domestic Wastewater Treatment
4
作者 黄霞 桂萍 钱易 《Tsinghua Science and Technology》 EI CAS 2000年第3期237-240,共4页
In the present research, a submerged membrane bioreactor was tested to treat domestic wastewater. Three experimental runs were conducted all with a hydraulic retention time of 5h and sludge retention times (SRTs) of 5... In the present research, a submerged membrane bioreactor was tested to treat domestic wastewater. Three experimental runs were conducted all with a hydraulic retention time of 5h and sludge retention times (SRTs) of 5, 10, and 20 d. The pollutant removal performance of the membrane bioreactor, the membrane effluent quality, and a kinetic model for sludge growth in the bioreactor were investigated. The combined process was capable of removing over 90% of both COD (chemical oxygen demand) and NH 3 N on the average. The total removal for COD was almost independent of SRT, but that for NH 3 N improved with increasing SRT. Membrane effluent quality meets the water quality standard for reuse issued by the Ministry of Construction of China. Increasing SRT causes the concentrations of suspended solids (SS) and volatile suspended solids (VSS) in the bioreactor to increase. However, the ratio of VSS/SS did not change much. Kinetic analysis showed that the sludge yield coefficient (kg VSS·kg COD -1 ) and the endogenous coefficient of microorganisms were 0.25 and 0.04d -1 , which are similar to those of the conventional activated sludge process. 展开更多
关键词 submerged membrane bioreactor domestic wastewater treatment pollutant removal performance effluent quality sludge retention time sludge growing kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部