The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets ...The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.展开更多
Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addi...Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addition, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different purification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.展开更多
In the present study,a film consisting of TiO_2 doped with copper was prepared for efficiently decomposing 4-nitrophenol(4-NP) by photocatalysis.The preparing process of TiO_2 doped with copper includes two procedures...In the present study,a film consisting of TiO_2 doped with copper was prepared for efficiently decomposing 4-nitrophenol(4-NP) by photocatalysis.The preparing process of TiO_2 doped with copper includes two procedures:preparing Ti(OH)_4 doped with copper and synthesizing anatase and rutile TiO_2 doped with copper.Ti(OH)_4 doped with copper could be achieved by hydrolyzing TiCl_4in the mixed solution containing deionized water and copper oxalate.The Ti(OH)_4 doped with copper can be gained successfully by the following procedures:rinsing,drying and vacuum drying.The Ti(OH)_4 doped with copper could be converted into anatase TiO_2 doped with copper and rutile TiO_2 doped with copper by incineration for 4.5 h at 723 and 1 073 K,respectively.Characterizations of anatase TiO_2 doped with copper and rutile TiO_2 doped with copper were determined by X-ray diffraction(XRD) and energy dispersion of X-ray(EDX).Anatase and rutile TiO_2 doped with copper were dissolved in a mixed solution containing isopropanol and diethylamine.Stainless electrode was submerged into with the solutions,the film of TiO_2 was formed by drying the thin layer at a ramp rate of 3℃/min until 373 K,and this temperature was held for 1 h.The temperature of the oven was subsequently increased to a final temperature of 823 K at a ramp rate of 3℃/min,and was held at this value for 1 h.The stainless steel covered with modified TiO_2 film was utilized as the anode.The stainless steel mesh was used as the cathode.The cathode and anode were connected with the source and immersed into the solution with 100 mg/L 4-NP.The whole reaction on photocatalysis was perfectly carried out after ultraviolet radiation and aerator were run.The experimental results showed that:cracking ratio of 4-NP ring,the removal ratio of chemical oxygen demand(COD) and total organic carbon(TOC) were respectively more than 90%,80% and 80% within 2 h.Degradation of 4-NP implied its potential application in associated wastewater.展开更多
A series of novel and simple ligands based on a biscarboxyl-functionalized benzimidazole derivative were synthesized.The experiments showed that the ligand L2 as a low molecular weight(LMW) hydrogelator could form sta...A series of novel and simple ligands based on a biscarboxyl-functionalized benzimidazole derivative were synthesized.The experiments showed that the ligand L2 as a low molecular weight(LMW) hydrogelator could form stable metallo-hydrogels in the presence of up to 0.3 equiv.of lead ions.The metallo-hydrogels were characterized using powder X-ray diffraction,scanning electron microscopy(SEM),and Fourier transform infrared(FT-IR) spectroscopic techniques.When the molar ratio of L2:Pb2+ was in the range of 1:0.3 to 1:0.5 a translucent gel was produced.When the L2:Pb2+ molar ratio was higher than 1:0.5 the resulting gel tended to be opaque.The morphologies of these metallo-hydrogels were L2/Pb ratio dependent,ranging from worm-like to rod-shaped and nanofibrous.The FT-IR and X-ray diffraction(XRD) studies revealed that L2-Pb complexation was the main driving force for the formation of the metallo-hydrogels.In addition,these metallo-hydrogels exhibited outstanding thermostability and thermoreversibility,and displayed a reversible sol-gel transition induced by changes in pH and EDTA concentration.Importantly,ligand L2 showed an excellent capacity for the removal of Pb 2+ in aqueous solution through the formation of metallo-hydrogels.At a L2:Pb molar ratio of 1:0.5 and below,the concentration of residual Pb2+ was as low as 7.6×10-5 mol/L in aqueous solution,and the removal ratio was as high as 95.4%.These results demonstrate that multi-channel responsive smart metallo-hydrogels have the potential to be widely applied in materials science,and might provide the basis for lead pollution capture and removal.展开更多
A partial pit exhaust ventilation(PPEV)system installed below the slatted floor has been widely used in fattening pig barns nowadays in Denmark.Experimental tests showed that annually around 50%of ammonia emissions wa...A partial pit exhaust ventilation(PPEV)system installed below the slatted floor has been widely used in fattening pig barns nowadays in Denmark.Experimental tests showed that annually around 50%of ammonia emissions was collected by PPEV system.However,the percent of emissions collected by PPEV system from different emission sources including slurry manure surfaces,top surfaces,bottom surfaces and side surfaces of the slatted floor has not been investigated as well as the mass transfer coefficients.This study applied CFD modeling to investigate the removal ratio of ammonia emissions from four emission surfaces including the top,side,bottom surfaces of the slatted floor and slurry manure surfaces.The CFD model was validated by experimental air speeds measured in a room equipped with two full-scale pigpens.The validated CFD model was further adopted to simulate cases under five ventilation rates(2000-4000 m^(3)/h),four emission sources and two locations of PPEV system exhaust.The results showed that the removal ratios of ammonia emissions by PPEV system from the four emission sources were generally higher for the cases that the PPEV exhaust was installed opposite to the air supplier than the values of those cases that the PPEV exhaust was located at the same side of side wall air supplier.The removal ratios of ammonia emissions were the highest with the emission source of slurry manure surface and generally 30%higher than the values of other cases.The mass transfer coefficients with the emission sources on the side surfaces of the slatted floor were the largest.The results indicated that the airflow patterns and locations of emission sources greatly influenced the removal ratios of ammonia emissions and ammonia mass transfer coefficients.展开更多
Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work...Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work, a novel sequencing batch biofilm reactor (NSBBR) was developed to enhance the nitrogen removal from wastewater with low COD/ TN ratio. The NSBBR was divided into two units separated by a vertical clapboard. Alternate feeding and aeration was performed in the two units, which created an anoxie unit with rich substrate content and an aeration unit deficient in substrate simultaneously. Therefore, the utilization of the influent carbon source for denitrification was increased, leading to higher TN removal compared to conventional SBBR (CSBBR) operation. The results show that the CSBBR removed up to 76.8%, 44.5% and 10.4% of TN, respectively, at three tested COD/TN ratios (9.0, 4.8 and 2.5). In contrast, the TN removal of the NSBBR could reach 81.9%, 60.5% and 26.6%, respectively, at the corresponding COD/TN ratios. Therefore, better TN removal performance could be achieved in the NSBBR, especially at low CODfrN ratios (4.8 and 2.5). Furthermore, it is easy to upgrade a CSBBR into an NSBBR in practice.展开更多
The laboratory experiments,thermodynamic analysis,dynamic analysis,and industrial trials were carried out to investigate the influence of refining slag on the evolution and removal of oxide inclusions in 55SiCrA sprin...The laboratory experiments,thermodynamic analysis,dynamic analysis,and industrial trials were carried out to investigate the influence of refining slag on the evolution and removal of oxide inclusions in 55SiCrA spring steel.The reduction in basicity and Al_(2)O_(3) content in refining slag can reduce the[Al]s content in the molten steel,which is conducive to the control of the low melting point of inclusions.However,the refining slag with excessively low basicity transfers the oxygen element to molten steel and increases the Al_(2)O_(3) content in inclusions,which is harmful to the control of inclusions.According to the chemical compositions of inclusions and refining slag in laboratory experiments,their physical parameters were calculated.The maximum separation ratio and the moving time of inclusions to reach the maximum separation ratio(t_(max))of inclusions under different laboratory experimental conditions were studied.The maximum separation ratio of inclusions is positively correlated with the overall wettability(coshIMS)among the slag,steel,and inclusions.The maximum separation ratio of inclusions obtained by laboratory experiments is between 85%and 91%.The t_(max) decreases with the decline in basicity and Al_(2)O_(3) content of refining slag,but excessively low basicity will increase the t_(max).The basicity of refining slag in the range of 0.88–0.97 and the content of Al_(2)O_(3) less than 6%is not only conducive to reducing the content of Al_(2)O_(3) and the melting point of inclusions but also beneficial to removing the inclusions to the slag.The slag system shows good metallurgical results in industrial trials.展开更多
In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The obj...In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The objective of this study was to investigate the effect of landfill leachate on nutrient removal of the wastewater treatment process. It was demonstrated that when landfill leachate was co-treated with municipal wastewater, the high ammonia concentration in the leachate did not have a negative impact on the nitrification. The system was able to adapt to the environment and was able to improve nitrification capacity. The readily biodegradable portion of chemical oxygen demand(COD)in the leachate was utilized by the system to improve phosphorus and nitrate removal.However, this portion was small and majority of the COD ended up in the effluent thereby decreased the quality of the effluent. The study showed that the 2.5% mixing ratio of leachate with wastewater improved the overall biological nutrient removal process of the system without compromising the COD removal efficiency.展开更多
基金Supported by the National Natural Science Foundation of China (50921063,51104191)the Natural Science Foundationof Chongqing (2009BA6047)
文摘The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21276204,20936004)
文摘Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addition, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different purification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.
基金Environmental Protection Department of Jiangsu Province,China(No.2013023)Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction,China(No.IWCER201202)
文摘In the present study,a film consisting of TiO_2 doped with copper was prepared for efficiently decomposing 4-nitrophenol(4-NP) by photocatalysis.The preparing process of TiO_2 doped with copper includes two procedures:preparing Ti(OH)_4 doped with copper and synthesizing anatase and rutile TiO_2 doped with copper.Ti(OH)_4 doped with copper could be achieved by hydrolyzing TiCl_4in the mixed solution containing deionized water and copper oxalate.The Ti(OH)_4 doped with copper can be gained successfully by the following procedures:rinsing,drying and vacuum drying.The Ti(OH)_4 doped with copper could be converted into anatase TiO_2 doped with copper and rutile TiO_2 doped with copper by incineration for 4.5 h at 723 and 1 073 K,respectively.Characterizations of anatase TiO_2 doped with copper and rutile TiO_2 doped with copper were determined by X-ray diffraction(XRD) and energy dispersion of X-ray(EDX).Anatase and rutile TiO_2 doped with copper were dissolved in a mixed solution containing isopropanol and diethylamine.Stainless electrode was submerged into with the solutions,the film of TiO_2 was formed by drying the thin layer at a ramp rate of 3℃/min until 373 K,and this temperature was held for 1 h.The temperature of the oven was subsequently increased to a final temperature of 823 K at a ramp rate of 3℃/min,and was held at this value for 1 h.The stainless steel covered with modified TiO_2 film was utilized as the anode.The stainless steel mesh was used as the cathode.The cathode and anode were connected with the source and immersed into the solution with 100 mg/L 4-NP.The whole reaction on photocatalysis was perfectly carried out after ultraviolet radiation and aerator were run.The experimental results showed that:cracking ratio of 4-NP ring,the removal ratio of chemical oxygen demand(COD) and total organic carbon(TOC) were respectively more than 90%,80% and 80% within 2 h.Degradation of 4-NP implied its potential application in associated wastewater.
基金supported by the National Natural Science Foundation of China(21064006 and 21161018)the Natural Science Foundation of Gansu Province(1010RJZA018)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT1177)
文摘A series of novel and simple ligands based on a biscarboxyl-functionalized benzimidazole derivative were synthesized.The experiments showed that the ligand L2 as a low molecular weight(LMW) hydrogelator could form stable metallo-hydrogels in the presence of up to 0.3 equiv.of lead ions.The metallo-hydrogels were characterized using powder X-ray diffraction,scanning electron microscopy(SEM),and Fourier transform infrared(FT-IR) spectroscopic techniques.When the molar ratio of L2:Pb2+ was in the range of 1:0.3 to 1:0.5 a translucent gel was produced.When the L2:Pb2+ molar ratio was higher than 1:0.5 the resulting gel tended to be opaque.The morphologies of these metallo-hydrogels were L2/Pb ratio dependent,ranging from worm-like to rod-shaped and nanofibrous.The FT-IR and X-ray diffraction(XRD) studies revealed that L2-Pb complexation was the main driving force for the formation of the metallo-hydrogels.In addition,these metallo-hydrogels exhibited outstanding thermostability and thermoreversibility,and displayed a reversible sol-gel transition induced by changes in pH and EDTA concentration.Importantly,ligand L2 showed an excellent capacity for the removal of Pb 2+ in aqueous solution through the formation of metallo-hydrogels.At a L2:Pb molar ratio of 1:0.5 and below,the concentration of residual Pb2+ was as low as 7.6×10-5 mol/L in aqueous solution,and the removal ratio was as high as 95.4%.These results demonstrate that multi-channel responsive smart metallo-hydrogels have the potential to be widely applied in materials science,and might provide the basis for lead pollution capture and removal.
文摘A partial pit exhaust ventilation(PPEV)system installed below the slatted floor has been widely used in fattening pig barns nowadays in Denmark.Experimental tests showed that annually around 50%of ammonia emissions was collected by PPEV system.However,the percent of emissions collected by PPEV system from different emission sources including slurry manure surfaces,top surfaces,bottom surfaces and side surfaces of the slatted floor has not been investigated as well as the mass transfer coefficients.This study applied CFD modeling to investigate the removal ratio of ammonia emissions from four emission surfaces including the top,side,bottom surfaces of the slatted floor and slurry manure surfaces.The CFD model was validated by experimental air speeds measured in a room equipped with two full-scale pigpens.The validated CFD model was further adopted to simulate cases under five ventilation rates(2000-4000 m^(3)/h),four emission sources and two locations of PPEV system exhaust.The results showed that the removal ratios of ammonia emissions by PPEV system from the four emission sources were generally higher for the cases that the PPEV exhaust was installed opposite to the air supplier than the values of those cases that the PPEV exhaust was located at the same side of side wall air supplier.The removal ratios of ammonia emissions were the highest with the emission source of slurry manure surface and generally 30%higher than the values of other cases.The mass transfer coefficients with the emission sources on the side surfaces of the slatted floor were the largest.The results indicated that the airflow patterns and locations of emission sources greatly influenced the removal ratios of ammonia emissions and ammonia mass transfer coefficients.
基金supported by the Project of Science and Technology of Zhejiangthe National Natural Science Foundation of China (No. 50878195)
文摘Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work, a novel sequencing batch biofilm reactor (NSBBR) was developed to enhance the nitrogen removal from wastewater with low COD/ TN ratio. The NSBBR was divided into two units separated by a vertical clapboard. Alternate feeding and aeration was performed in the two units, which created an anoxie unit with rich substrate content and an aeration unit deficient in substrate simultaneously. Therefore, the utilization of the influent carbon source for denitrification was increased, leading to higher TN removal compared to conventional SBBR (CSBBR) operation. The results show that the CSBBR removed up to 76.8%, 44.5% and 10.4% of TN, respectively, at three tested COD/TN ratios (9.0, 4.8 and 2.5). In contrast, the TN removal of the NSBBR could reach 81.9%, 60.5% and 26.6%, respectively, at the corresponding COD/TN ratios. Therefore, better TN removal performance could be achieved in the NSBBR, especially at low CODfrN ratios (4.8 and 2.5). Furthermore, it is easy to upgrade a CSBBR into an NSBBR in practice.
基金This work was financially supported by the State Key Laboratory of Advanced Metallurgy Foundation(No.41621005)the Subject of Xiangtan Branch,Hunan Valin Iron&Steel Co.,Ltd.,China(No.2018386).
文摘The laboratory experiments,thermodynamic analysis,dynamic analysis,and industrial trials were carried out to investigate the influence of refining slag on the evolution and removal of oxide inclusions in 55SiCrA spring steel.The reduction in basicity and Al_(2)O_(3) content in refining slag can reduce the[Al]s content in the molten steel,which is conducive to the control of the low melting point of inclusions.However,the refining slag with excessively low basicity transfers the oxygen element to molten steel and increases the Al_(2)O_(3) content in inclusions,which is harmful to the control of inclusions.According to the chemical compositions of inclusions and refining slag in laboratory experiments,their physical parameters were calculated.The maximum separation ratio and the moving time of inclusions to reach the maximum separation ratio(t_(max))of inclusions under different laboratory experimental conditions were studied.The maximum separation ratio of inclusions is positively correlated with the overall wettability(coshIMS)among the slag,steel,and inclusions.The maximum separation ratio of inclusions obtained by laboratory experiments is between 85%and 91%.The t_(max) decreases with the decline in basicity and Al_(2)O_(3) content of refining slag,but excessively low basicity will increase the t_(max).The basicity of refining slag in the range of 0.88–0.97 and the content of Al_(2)O_(3) less than 6%is not only conducive to reducing the content of Al_(2)O_(3) and the melting point of inclusions but also beneficial to removing the inclusions to the slag.The slag system shows good metallurgical results in industrial trials.
基金funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) under the Engage Grant (EGP 463799-2014) with collaboration with KGS Groups (Winnipeg, Canada)
文摘In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The objective of this study was to investigate the effect of landfill leachate on nutrient removal of the wastewater treatment process. It was demonstrated that when landfill leachate was co-treated with municipal wastewater, the high ammonia concentration in the leachate did not have a negative impact on the nitrification. The system was able to adapt to the environment and was able to improve nitrification capacity. The readily biodegradable portion of chemical oxygen demand(COD)in the leachate was utilized by the system to improve phosphorus and nitrate removal.However, this portion was small and majority of the COD ended up in the effluent thereby decreased the quality of the effluent. The study showed that the 2.5% mixing ratio of leachate with wastewater improved the overall biological nutrient removal process of the system without compromising the COD removal efficiency.