A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount o...A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount of added particles,heat flux,and circulating flow velocity,were systematically inspected using resistance temperature detectors and pressure sensors.The results showed that the heat transfer eff ect was improved with the increase in the amount of added particles,circulating flow velocity,and particle diameter,but decreased with increasing heat flux.The pressure drop fluctuated with the increase in operating parameters,except circulating flow velocity.The enhancing factor reached up to 71.5%.The enhancing fac-tor initially increased and then decreased with the increase in the amount of added particles and circulating flow velocity,fluctuated with increasing particle diameter,and decreased with increasing heat flux.Phase diagrams showing the variation ranges of the operation variables for the enhancing factor were constructed.展开更多
Membrane will inevitably reach the end of its lifespan due to the irrecoverable fouling accumulation in membrane bioreactors(MBRs)during long-term operation.Herein,we developed an eco-friendly membrane regeneration st...Membrane will inevitably reach the end of its lifespan due to the irrecoverable fouling accumulation in membrane bioreactors(MBRs)during long-term operation.Herein,we developed an eco-friendly membrane regeneration strategy with triethyl phosphate(TEP),which successfully prolonged the lifespan of end-of-life(EOL)polyvinylidene fluoride(PVDF)membranes in a large-scale MBR.The regenerated(Rg)membrane exhibited a water permeance of 534.8±45.7 L m^(-2)h^(-1)bar-1,along with stable rejection rate,which was comparable with that of the new membrane.Furthermore,compared to the membrane subjected solely to preliminary cleaning,the Rg membrane presented a more hydrophilic surface due to the combination of preliminary cleaning and solvent-based processing.Besides,the Rg membrane presented less fouling propensity with the critical flux of 15.2 L m^(-2)h^(-1),significantly higher than that of the EOL membrane(4.0 L m^(-2)h^(-1)).Importantly,the membrane regeneration strategy was capable of guaranteeing the effluent quality in MBR systems for treating real municipal wastewater.This study provides an eco-friendly membrane regeneration strategy for effectively removing the irrecoverable foulants,thereby promoting the advancement of sustainable membrane-based wastewater treatment technology.展开更多
Marine biofouling is a global problem that is detrimental to both moving ships and static underwater devices.Marine microorganisms tend to attach to any unprotected surface and grow into biofilm,which can be hardly re...Marine biofouling is a global problem that is detrimental to both moving ships and static underwater devices.Marine microorganisms tend to attach to any unprotected surface and grow into biofilm,which can be hardly removed even under high shear flow condition[1].With the long-term accumulation of marine organisms,ships suffer significantly from the increase on the net weight as well as the drag when cruising.Increased drag causes fuel power penalties of up to86%at cruising speed;it is notable even a very thin layer展开更多
基金supported by the open foundation of State Key Laboratory of Chemical Engineering(No.SKL-ChE-18B03)by the Municipal Science and Technology Commission of Tianjin,China(No.2009ZCKFGX01900).
文摘A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount of added particles,heat flux,and circulating flow velocity,were systematically inspected using resistance temperature detectors and pressure sensors.The results showed that the heat transfer eff ect was improved with the increase in the amount of added particles,circulating flow velocity,and particle diameter,but decreased with increasing heat flux.The pressure drop fluctuated with the increase in operating parameters,except circulating flow velocity.The enhancing factor reached up to 71.5%.The enhancing fac-tor initially increased and then decreased with the increase in the amount of added particles and circulating flow velocity,fluctuated with increasing particle diameter,and decreased with increasing heat flux.Phase diagrams showing the variation ranges of the operation variables for the enhancing factor were constructed.
基金National Natural Science Foundation of China(Nos.51925806 and 52200108)for the financial support of the worksupported by the Chenguang Program of Shanghai Education Development FoundationShanghai Municipal Education Commission。
文摘Membrane will inevitably reach the end of its lifespan due to the irrecoverable fouling accumulation in membrane bioreactors(MBRs)during long-term operation.Herein,we developed an eco-friendly membrane regeneration strategy with triethyl phosphate(TEP),which successfully prolonged the lifespan of end-of-life(EOL)polyvinylidene fluoride(PVDF)membranes in a large-scale MBR.The regenerated(Rg)membrane exhibited a water permeance of 534.8±45.7 L m^(-2)h^(-1)bar-1,along with stable rejection rate,which was comparable with that of the new membrane.Furthermore,compared to the membrane subjected solely to preliminary cleaning,the Rg membrane presented a more hydrophilic surface due to the combination of preliminary cleaning and solvent-based processing.Besides,the Rg membrane presented less fouling propensity with the critical flux of 15.2 L m^(-2)h^(-1),significantly higher than that of the EOL membrane(4.0 L m^(-2)h^(-1)).Importantly,the membrane regeneration strategy was capable of guaranteeing the effluent quality in MBR systems for treating real municipal wastewater.This study provides an eco-friendly membrane regeneration strategy for effectively removing the irrecoverable foulants,thereby promoting the advancement of sustainable membrane-based wastewater treatment technology.
基金supported by the U.S.National Science Foundation(Grant No.DMR-1410853)the faculty start-up fund at Wayne State University,Chemical Engineering and Materials Science
文摘Marine biofouling is a global problem that is detrimental to both moving ships and static underwater devices.Marine microorganisms tend to attach to any unprotected surface and grow into biofilm,which can be hardly removed even under high shear flow condition[1].With the long-term accumulation of marine organisms,ships suffer significantly from the increase on the net weight as well as the drag when cruising.Increased drag causes fuel power penalties of up to86%at cruising speed;it is notable even a very thin layer