Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents...Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.展开更多
North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewabl...North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.展开更多
On March 19, the construction of a 10-MW photovoltaic power plant and a 1 000-kW new type geothermal power generation project were started by Guodian Longyuan Group in Yanbajing Town, Dangxiong County of Tibet.
Since renewable energy sources are growing in importance, how well they can penetrate the energy market for power generation will be a very important factor in the role the coal industry will play in the future. This ...Since renewable energy sources are growing in importance, how well they can penetrate the energy market for power generation will be a very important factor in the role the coal industry will play in the future. This paper examined the displacement of coal power plant capacity from 2010 to 2050 by renewables with respect to three drivers assumed under various conditions: the American Recovery and Reinvestment Act (ARRA), Greenhouse Gas (GItG) policy, and varying plant capital cost cases. The results by 2050 illustrate that renewable market penetration captures anywhere from 1.9% to 6.4% of potential coal power generation capacity additions. Renewable power generation capacity additions is expected to outpace coal power plant additions by 89% with respect to ARRA in 2050, however with no GHG policy coal power generation capacity build-outs will outpace renewables by as high as 809%. Finally, coal power generation is still projected to be the largest single energy source contributor to the electricity market making up 28.0% of total available capacity, while renewables are expected to only make up 16.3% of total available capacity.展开更多
This paper comes up with a concept of synergetic advanced dispatch in order to deal with the ever-increasing uncertainty in power grid: Decision is made with respecting to AGC units and active load on the basis of syn...This paper comes up with a concept of synergetic advanced dispatch in order to deal with the ever-increasing uncertainty in power grid: Decision is made with respecting to AGC units and active load on the basis of synergetic unit combination such that active load’s advantages in regulation speed is put to full use in achieving efficient cooperation with renewable energy power. Meanwhile, factoring in allowable frequency variation range during decision-making may help to reduce AGC units’ regulation load and improve power grid's capacity of accommodating renewable energy power. Calculation example analysis suggested that the model and technique presented in this paper is capable of efficient coordination between active loads and renewable energy power, delivering friendly transition with day-ahead dispatch and AVC control.展开更多
New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the depen...New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the dependence of RES on natural conditions of region, schedule of energy supply, parameters and configuration of distribution network is suggested in the paper. Results of computations of test scheme confirm the efficiency of the proposed method and its simplicity as compared with the methods considered in literature sources.展开更多
This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system s...This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system simulation+plant optimization”.The first step is“system simulation”which is using the power market simu-lation model to obtain the initial nodal marginal price and curtailment of the integrated renewable generation plant.The second step is“plant optimization”which is using the operation optimization model of the integrated renewable generation plant to optimize the charge-discharge operation of energy storage.In the third step,“sys-tem simulation”is conducted again,and the combined power of renewable and energy storage inside the plant is brought into the system model and simulated again for 8,760 h of power market year-round to quantify and compare the power generation and revenue of the integrated renewable generation plant after applying energy storage.In the case analysis of the provincial power spot market,an empirical analysis of a 1 GW wind-solar-storage integrated generation plant was conducted.The results show that the economic benefit of energy storage is approximately proportional to its capacity and that there is a slowdown in the growth of economic benefits when the capacity is too large.In the case that the investment benefit of energy storage only considers the in-come of electric energy-related incomes and does not consider the income of capacity mechanism and auxiliary services,the income of energy storage cannot fulfill the economic requirements of energy storage investment.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
Renewable energy transmission by high-voltage direct current(HVDC)has attracted increasing attention for the development and utilization of large-scale renewable energy under the Carbon Peak and Carbon Neutrality Stra...Renewable energy transmission by high-voltage direct current(HVDC)has attracted increasing attention for the development and utilization of large-scale renewable energy under the Carbon Peak and Carbon Neutrality Strategy in China.High-penetration power electronic systems(HPPESs)have gradually formed at the sending end of HVDC transmission.The operation of such systems has undergone profound changes compared with traditional power systems dominated by synchronous generators.New stability issues,such as broadband oscillation and transient over-voltage,have emerged,causing tripping accidents in large-scale renewable energy plants.The analysis methods and design principles of traditional power systems are no longer suitable for HPPESs.In this paper,the mechanisms of broadband oscillation and transient over-voltage are revealed,and analytical methods are proposed for HPPESs,including small-signal impedance analysis and electromagnetic transient simulation.Validation of the theoretical research has been accomplished through its application in several practical projects in north,northwest,and northeast region of China.Finally,suggestions for the construction and operation of the future renewable-energy-dominated power system are put forward.展开更多
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb...This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme.展开更多
Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced ...Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced by renewable energy generation which is highly distributed across the entire grid,new challenges are emerging to the control and stability of large-scale power systems.New analysis and control methods are needed for power systems to cope with the ongoing transformation.In the CSEE JPES forum,six leading experts were invited to deliver keynote speeches,and the participating researchers and professionals had extensive exchanges and discussions on the control and stability of power systems.Specifically,potential changes and challenges of power systems with high penetration of renewable energy generation were introduced and explained,and advanced control methods were proposed and analyzed for the transient stability enhancement of power grids.展开更多
Various ocean energy technologies have been developed that harness several kinds of renewable energy resources of the ocean. However, these technologies suffer from problems such as high construction and maintenance c...Various ocean energy technologies have been developed that harness several kinds of renewable energy resources of the ocean. However, these technologies suffer from problems such as high construction and maintenance costs, restrictive installation requirements and damage by extraordinary weather conditions. In this paper, we propose a lightweight and FPGD (flexible power generation device) that overcomes these problems. The FPGD essentially consists of piezoelectric films and silicon rubber. Because the FPGD is small and flexible, it is anticipated to efficiently convert fluid energy into electrical energy even when the fluid energy is low. We perform several experiments to confirm the effectiveness of the FPGD and we discuss the results.展开更多
Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electri...Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electric power systems, the most interesting perspective concerns the capability of the system to increase the exploitation of the renewable resources. The integration of DGs in the electric distribution network requires a revision of this infrastructure, so far designed and developed assuming that power flows in one direction: from the high voltage transmission network to the medium voltage distribution, to reach final customers on the low voltage network. The attention to an efficient operation of distribution networks is increasing all over the world; this interest is becoming higher and higher also in Italy, where the high energy prices push in the direction of fostering efficiency as much as possible. This work describes a study developed in the AlpEnergy project framework: an International Cooperation Program aimed at introducing an efficient operational model for the distributed production and consumption. In particular it is proposed a new model for the integration and the management of the DG in the distribution network. The new model (defined VPS: Virtual Power System) is based on a communication channel between the active users (generators), the loads and, eventually, the Distribution System Operators (DSOs).展开更多
Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low elect...Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study to provide an overview of the current condition of the Philippines' power system and discuss the energy flexibility in the Philippines' power system. A further discussion and recommendation is conducted in the end of the paper.展开更多
The vast growing economic development in South East Asia (ASEAN) region leads to the increase of energy demand particularly electricity. Almost all the ASEAN member countries are planning to develop nuclear power plan...The vast growing economic development in South East Asia (ASEAN) region leads to the increase of energy demand particularly electricity. Almost all the ASEAN member countries are planning to develop nuclear power plant in the near future, despite having quite enormous number of renewable energy potential such as geothermal (Indonesia and Philippines), high solar radiation (between 3 - 5 kW/m2/day), biomass and hydro the countries still required more sophisticated and more reliable source of power for its based load such as nuclear power. Philippines has built the first nuclear power plant back in 1980 in Bataan, however the commissioning of this plant was postponed due to the political power turbulence. The question whether nuclear or renewable energy could be the best option in term of cost effectiveness will be assessed in this paper. The optimization methodology has been used by using GAMS (General Algebraic Model), the econometric based on time series (1999-2010) is used to predict the increases of national power generation up to year 2030. The increases of electricity demand is assumed to be linear with the increased country GDP (Gross Domestic Products) and population. The optimization predicted that In Malaysia, the renewable energy could be the best option, since it shows lower cost compare to the fossil fuel based power plant. Geothermal in the Philippines shows cheaper to be commissioned compare to fossil fuel and nuclear power plant. While Indonesia the cost of nuclear still not competitive enough compare to fossil fuel, mainly due to cost of subsidy.展开更多
Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Amon...Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Among these 80% of power station is gas based. Rest of the 20% is coal, liquid and furnace oil based. Bangladesh has only one Hydraulic power station. These gas and coal based power stations are giving adverse effect in Bangladesh. The main emissions from coal combustion at thermal power plants are carbon dioxide (CO), nitrogen oxides (NO), sulfur oxides (SO), chlorofluorocarbons (CFCs), and air- borne inorganic particles such as fly ash, soot, and other trace gas species. Carbon dioxide, methane, and chlorofluorocarbons are greenhouse gases. These emissions are considered to be responsible for heating up the atmosphere, producing a harmful global environment. It is known to all that hydro power station is a clean source of energy, but it has also some ecological and environmental effect. Dhaka is one of the top polluted city in the world. So for power generation if the environmental effect is not considered then Bangladesh will be in great trouble. The purpose of this paper is to discuss the present and future possible environmental effect of power generation in Bangladesh.展开更多
Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usa...Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usage of these fossil fuels can also cause environmental pollution and greenhouse effect. To deal with energy security and environmental crisis, it is wise to work towards three directions: energy saving and emission reduction, energy recovery, exploration of new renewable energy. Currently, the electricity generation technology using piezoelectric material to recover the compressional or vibrational energy begins to draw attention. However, most of the researches are devoted to designing small self-powered devices. This paper presents an overview of the feasibility of piezoelectric power generation system for electric power system, in which the fundamentals of piezoelectric power generation and the feasible structure of the system are discussed.展开更多
This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The ...This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The model seeks the optimal energy mix from 2000 to 2100 that minimizes the world total energy system cost under various kinds of energy and technological constraints, such as energy resource constraints, energy supply and demand balance constraints, and CO2 emissions constraints. This paper discusses the results of primary energy supply, power generation mix, CO2 emission, CCS (carbon capture and storage) and total system costs for six regions including world as a whole. To evaluate viable pathways forward for implementation of sustainable energy strategies, nuclear power generation is a viable source of clean and green energy to mitigate the CO2 emissions. Present research shows simulation results in two cases consisting of no CO2 regulation case (base case) and CO2 REG case (regulation case) which halves the world CO2 emissions by the year 2050. Main findings of this research describe that renewable and nuclear power generation will contribute significantly to mitigate the CO2 emission worldwide.展开更多
In this paper,we present five basic types of renewable energy sources,namely:wind turbines,solar cells,small hydroelectric plants,biomass,and geothermal sources of energy.Wind turbines transform energy of wind into el...In this paper,we present five basic types of renewable energy sources,namely:wind turbines,solar cells,small hydroelectric plants,biomass,and geothermal sources of energy.Wind turbines transform energy of wind into electrical energy,solar cells transform energy of sun into electric energy,hydroelectric plants transform energy of water into electric energy,devices or machines can be constructed to transform energy of biomass into heat energy,and geothermal energy into some form of energy.In this paper we present basic information and reasons why there is need today to use these forms of energy—called green energies,we present how these devices or machines function,and we propose for future work design of typical devices or machines that will satisfy basic functional needs.展开更多
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under 5214JS220010.
文摘Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.
基金Supported by the Science and Technology Foundation of SGCC(Large-scale development and utilization mode of solar energy in North Africa under the condition of transcontinental grid interconnection:NY71-18-004)the Science and Technology Foundation of GEI(Research on Large-scale Solar Energy Development in West-Asia and North-Africa:NYN11201805034)
文摘North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.
文摘On March 19, the construction of a 10-MW photovoltaic power plant and a 1 000-kW new type geothermal power generation project were started by Guodian Longyuan Group in Yanbajing Town, Dangxiong County of Tibet.
文摘Since renewable energy sources are growing in importance, how well they can penetrate the energy market for power generation will be a very important factor in the role the coal industry will play in the future. This paper examined the displacement of coal power plant capacity from 2010 to 2050 by renewables with respect to three drivers assumed under various conditions: the American Recovery and Reinvestment Act (ARRA), Greenhouse Gas (GItG) policy, and varying plant capital cost cases. The results by 2050 illustrate that renewable market penetration captures anywhere from 1.9% to 6.4% of potential coal power generation capacity additions. Renewable power generation capacity additions is expected to outpace coal power plant additions by 89% with respect to ARRA in 2050, however with no GHG policy coal power generation capacity build-outs will outpace renewables by as high as 809%. Finally, coal power generation is still projected to be the largest single energy source contributor to the electricity market making up 28.0% of total available capacity, while renewables are expected to only make up 16.3% of total available capacity.
文摘This paper comes up with a concept of synergetic advanced dispatch in order to deal with the ever-increasing uncertainty in power grid: Decision is made with respecting to AGC units and active load on the basis of synergetic unit combination such that active load’s advantages in regulation speed is put to full use in achieving efficient cooperation with renewable energy power. Meanwhile, factoring in allowable frequency variation range during decision-making may help to reduce AGC units’ regulation load and improve power grid's capacity of accommodating renewable energy power. Calculation example analysis suggested that the model and technique presented in this paper is capable of efficient coordination between active loads and renewable energy power, delivering friendly transition with day-ahead dispatch and AVC control.
文摘New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the dependence of RES on natural conditions of region, schedule of energy supply, parameters and configuration of distribution network is suggested in the paper. Results of computations of test scheme confirm the efficiency of the proposed method and its simplicity as compared with the methods considered in literature sources.
基金funded by the China Energy Investment Cor-poration under the program“Simulation of energy storage application scenarios in China and research on development strategy of China En-ergy Investment Corporation”(Grant No.:GJNY-21-143).
文摘This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system simulation+plant optimization”.The first step is“system simulation”which is using the power market simu-lation model to obtain the initial nodal marginal price and curtailment of the integrated renewable generation plant.The second step is“plant optimization”which is using the operation optimization model of the integrated renewable generation plant to optimize the charge-discharge operation of energy storage.In the third step,“sys-tem simulation”is conducted again,and the combined power of renewable and energy storage inside the plant is brought into the system model and simulated again for 8,760 h of power market year-round to quantify and compare the power generation and revenue of the integrated renewable generation plant after applying energy storage.In the case analysis of the provincial power spot market,an empirical analysis of a 1 GW wind-solar-storage integrated generation plant was conducted.The results show that the economic benefit of energy storage is approximately proportional to its capacity and that there is a slowdown in the growth of economic benefits when the capacity is too large.In the case that the investment benefit of energy storage only considers the in-come of electric energy-related incomes and does not consider the income of capacity mechanism and auxiliary services,the income of energy storage cannot fulfill the economic requirements of energy storage investment.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
基金This work is funded by National Key Research and Development Program of China(2021 YFB2400500).The authors would like to thank Guoqing He,Haijiao Wang,Yuntao Xiao,and Yuqi Duan for their contributions in research review,field test verification,and data analysis.
文摘Renewable energy transmission by high-voltage direct current(HVDC)has attracted increasing attention for the development and utilization of large-scale renewable energy under the Carbon Peak and Carbon Neutrality Strategy in China.High-penetration power electronic systems(HPPESs)have gradually formed at the sending end of HVDC transmission.The operation of such systems has undergone profound changes compared with traditional power systems dominated by synchronous generators.New stability issues,such as broadband oscillation and transient over-voltage,have emerged,causing tripping accidents in large-scale renewable energy plants.The analysis methods and design principles of traditional power systems are no longer suitable for HPPESs.In this paper,the mechanisms of broadband oscillation and transient over-voltage are revealed,and analytical methods are proposed for HPPESs,including small-signal impedance analysis and electromagnetic transient simulation.Validation of the theoretical research has been accomplished through its application in several practical projects in north,northwest,and northeast region of China.Finally,suggestions for the construction and operation of the future renewable-energy-dominated power system are put forward.
基金supported by National Natural Science Foundation of China(60904008,61273336)the Fundamental Research Funds for the Central Universities(2018MS025)the National Basic Research Program of China(973 Program)(B1320133020)
文摘This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme.
文摘Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced by renewable energy generation which is highly distributed across the entire grid,new challenges are emerging to the control and stability of large-scale power systems.New analysis and control methods are needed for power systems to cope with the ongoing transformation.In the CSEE JPES forum,six leading experts were invited to deliver keynote speeches,and the participating researchers and professionals had extensive exchanges and discussions on the control and stability of power systems.Specifically,potential changes and challenges of power systems with high penetration of renewable energy generation were introduced and explained,and advanced control methods were proposed and analyzed for the transient stability enhancement of power grids.
文摘Various ocean energy technologies have been developed that harness several kinds of renewable energy resources of the ocean. However, these technologies suffer from problems such as high construction and maintenance costs, restrictive installation requirements and damage by extraordinary weather conditions. In this paper, we propose a lightweight and FPGD (flexible power generation device) that overcomes these problems. The FPGD essentially consists of piezoelectric films and silicon rubber. Because the FPGD is small and flexible, it is anticipated to efficiently convert fluid energy into electrical energy even when the fluid energy is low. We perform several experiments to confirm the effectiveness of the FPGD and we discuss the results.
文摘Worldwide the introduction of dispersed generators (DG) in the distribution network is assuming a significant importance. There is an increasing relevance of the energy process efficiency improvement; as for electric power systems, the most interesting perspective concerns the capability of the system to increase the exploitation of the renewable resources. The integration of DGs in the electric distribution network requires a revision of this infrastructure, so far designed and developed assuming that power flows in one direction: from the high voltage transmission network to the medium voltage distribution, to reach final customers on the low voltage network. The attention to an efficient operation of distribution networks is increasing all over the world; this interest is becoming higher and higher also in Italy, where the high energy prices push in the direction of fostering efficiency as much as possible. This work describes a study developed in the AlpEnergy project framework: an International Cooperation Program aimed at introducing an efficient operational model for the distributed production and consumption. In particular it is proposed a new model for the integration and the management of the DG in the distribution network. The new model (defined VPS: Virtual Power System) is based on a communication channel between the active users (generators), the loads and, eventually, the Distribution System Operators (DSOs).
文摘Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study to provide an overview of the current condition of the Philippines' power system and discuss the energy flexibility in the Philippines' power system. A further discussion and recommendation is conducted in the end of the paper.
文摘The vast growing economic development in South East Asia (ASEAN) region leads to the increase of energy demand particularly electricity. Almost all the ASEAN member countries are planning to develop nuclear power plant in the near future, despite having quite enormous number of renewable energy potential such as geothermal (Indonesia and Philippines), high solar radiation (between 3 - 5 kW/m2/day), biomass and hydro the countries still required more sophisticated and more reliable source of power for its based load such as nuclear power. Philippines has built the first nuclear power plant back in 1980 in Bataan, however the commissioning of this plant was postponed due to the political power turbulence. The question whether nuclear or renewable energy could be the best option in term of cost effectiveness will be assessed in this paper. The optimization methodology has been used by using GAMS (General Algebraic Model), the econometric based on time series (1999-2010) is used to predict the increases of national power generation up to year 2030. The increases of electricity demand is assumed to be linear with the increased country GDP (Gross Domestic Products) and population. The optimization predicted that In Malaysia, the renewable energy could be the best option, since it shows lower cost compare to the fossil fuel based power plant. Geothermal in the Philippines shows cheaper to be commissioned compare to fossil fuel and nuclear power plant. While Indonesia the cost of nuclear still not competitive enough compare to fossil fuel, mainly due to cost of subsidy.
文摘Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Among these 80% of power station is gas based. Rest of the 20% is coal, liquid and furnace oil based. Bangladesh has only one Hydraulic power station. These gas and coal based power stations are giving adverse effect in Bangladesh. The main emissions from coal combustion at thermal power plants are carbon dioxide (CO), nitrogen oxides (NO), sulfur oxides (SO), chlorofluorocarbons (CFCs), and air- borne inorganic particles such as fly ash, soot, and other trace gas species. Carbon dioxide, methane, and chlorofluorocarbons are greenhouse gases. These emissions are considered to be responsible for heating up the atmosphere, producing a harmful global environment. It is known to all that hydro power station is a clean source of energy, but it has also some ecological and environmental effect. Dhaka is one of the top polluted city in the world. So for power generation if the environmental effect is not considered then Bangladesh will be in great trouble. The purpose of this paper is to discuss the present and future possible environmental effect of power generation in Bangladesh.
文摘Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usage of these fossil fuels can also cause environmental pollution and greenhouse effect. To deal with energy security and environmental crisis, it is wise to work towards three directions: energy saving and emission reduction, energy recovery, exploration of new renewable energy. Currently, the electricity generation technology using piezoelectric material to recover the compressional or vibrational energy begins to draw attention. However, most of the researches are devoted to designing small self-powered devices. This paper presents an overview of the feasibility of piezoelectric power generation system for electric power system, in which the fundamentals of piezoelectric power generation and the feasible structure of the system are discussed.
文摘This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The model seeks the optimal energy mix from 2000 to 2100 that minimizes the world total energy system cost under various kinds of energy and technological constraints, such as energy resource constraints, energy supply and demand balance constraints, and CO2 emissions constraints. This paper discusses the results of primary energy supply, power generation mix, CO2 emission, CCS (carbon capture and storage) and total system costs for six regions including world as a whole. To evaluate viable pathways forward for implementation of sustainable energy strategies, nuclear power generation is a viable source of clean and green energy to mitigate the CO2 emissions. Present research shows simulation results in two cases consisting of no CO2 regulation case (base case) and CO2 REG case (regulation case) which halves the world CO2 emissions by the year 2050. Main findings of this research describe that renewable and nuclear power generation will contribute significantly to mitigate the CO2 emission worldwide.
文摘In this paper,we present five basic types of renewable energy sources,namely:wind turbines,solar cells,small hydroelectric plants,biomass,and geothermal sources of energy.Wind turbines transform energy of wind into electrical energy,solar cells transform energy of sun into electric energy,hydroelectric plants transform energy of water into electric energy,devices or machines can be constructed to transform energy of biomass into heat energy,and geothermal energy into some form of energy.In this paper we present basic information and reasons why there is need today to use these forms of energy—called green energies,we present how these devices or machines function,and we propose for future work design of typical devices or machines that will satisfy basic functional needs.