期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biofuel Recovery from Plantain and Banana Plant Wastes:Integration of Biochemical and Thermochemical Approach
1
作者 Abdulmoseen Segun Giwa Mingqiang Sheng +5 位作者 Ndungutse Jean Maurice Xinxin Liu Zelong Wang Fengmin Chang Bo Huang Kaijun Wang 《Journal of Renewable Materials》 SCIE EI 2023年第6期2593-2629,共37页
Globally,fossil fuel dependence has created several environmental challenges and climate change.Hence,creating other alternative renewable and ecologically friendly bio-energy sources is necessary.Lignocellulosic biom... Globally,fossil fuel dependence has created several environmental challenges and climate change.Hence,creating other alternative renewable and ecologically friendly bio-energy sources is necessary.Lignocellulosic biomass has gained significant attention recently as a renewable material for biofuel production.The large amounts of plantain and banana plant parts wasted after harvesting,as well as the peels generated daily by the fruit market and industries,demonstrate the potential of bioenergy resources.This review briefly assesses plantain and banana plant biomass(PBB)generated in the developing,developed,and underdeveloped countries,the consumable parts,and feasible products yield.It emphasized the advantages and disadvantages of the commonly adopted treatment technologies of composting,incineration,and landfilling.Further,the utilization of PBB as catalysts in biodiesel synthesis was briefly highlighted.To optimize recovery of biofuel,different integration routes of pyrolysis,anaerobic digestion,fermentation,hydrothermal carbonization,hydrothermal liquefaction,and hydrothermal gasification for the valorization of the PBB were proposed.The complex compounds present in the PBB(hemicellulose,cellulose,and lignin)can be converted into valuable bio-products such as methane gas and bio-ethanol for bioenergy,and nutrients to promote bioactive ingredients.The investigation of the viability and innovation potential of the integrated routes’technology is necessary to improve the circular bio-economy and the recovery of biofuels from biomass waste,particularly PBB. 展开更多
关键词 Bio-chemical BIO-FUEL INTEGRATION plantain and banana waste:renewable materials
下载PDF
Low-temperature compression-assisted absorption thermal energy storage using ionic liquids
2
作者 Wei Wu 《Energy and Built Environment》 2020年第2期139-148,共10页
Thermal energy storage technologies play a significant role in building energy efficiency by balancing the mis-match between renewable energy supply and building energy demand.The absorption thermal energy storage(ATE... Thermal energy storage technologies play a significant role in building energy efficiency by balancing the mis-match between renewable energy supply and building energy demand.The absorption thermal energy storage(ATES)stands out due to its high energy storage density(ESD),high coefficient of performance(COP),low charg-ing temperature and wider application flexibility.A hybrid compression-assisted ATES(CATES)using ionic liquid(IL)-based working fluids is investigated to address the problems of the existing ATES cycle.Models for mixture property and cycle performance are established with verified accuracies.Four ILs([DMIM][DMP],[EMIM][Ac],[EMIM][DEP],and[EMIM][EtSO_(4)])are compared with H_(2)O/LiBr.Results show that the CATES effectively avoid the crystallization,decreases the circulation ratio,lowers the charging temperature,and improves the COP/ESD.H_(2)O/[DMIM][DMP]has the highest COP and performs better than H_(2)O/LiBr with generation temperatures above 86℃,while H_(2)O/[EMIM][EtSO_(4)]shows the highest COP with generation temperatures below 75℃.Among the H_(2)O/IL mixtures,H_(2)O/[EMIM][Ac]shows the highest ESD with generation temperatures above 86℃,otherwise H_(2)O/[EMIM][EtSO_(4)]shows the highest.The optimal compression ratio is 1.6-2.8 for H_(2)O/[DMIM][DMP]under the generation temperatures of 90-70℃with the maximum COP of 0.758-0.727.The ESD increases significantly with the compression ratio. 展开更多
关键词 Thermal energy storage renewable and waste Hybrid absorption cycle Ionic liquid Working fluid Energy storage density
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部