We consider a random walk on Z in random environment with possible jumps {-L,…, -1, 1}, in the case that the environment {ωi : i ∈ Z} are i.i.d.. We establish the renewal theorem for the Markov chain of "the envi...We consider a random walk on Z in random environment with possible jumps {-L,…, -1, 1}, in the case that the environment {ωi : i ∈ Z} are i.i.d.. We establish the renewal theorem for the Markov chain of "the environment viewed from the particle" in both annealed probability and quenched probability, which generalize partially the results of Kesten (1977) and Lalley (1986) for the nearest random walk in random environment on Z, respectively. Our method is based on (L, 1)-RWRE formulated in Hong and Wang the intrinsic branching structure within the (2013).展开更多
This paper considers the optimal replacement problem of a repairable system consisting of one component and a single repairman, assume that the system after repair is not 'as good as new', by using the geometr...This paper considers the optimal replacement problem of a repairable system consisting of one component and a single repairman, assume that the system after repair is not 'as good as new', by using the geometric process, we consider a placement policy T based on the age of the system. The problem is to determine the optimal replacement policy T * such that the long_run expected benefit per unit time is maximized. Also, the explicit expression of the long_run expected benefit per unit time can be found. In some conditions, the existence and uniqueness of the optimal policy T * can be proved, finally, we prove that the policy T * is better than the policy T * in .展开更多
The maintenance model of simple repairable system is studied.We assume that there are two types of failure,namely type Ⅰ failure(repairable failure)and type Ⅱ failure(irrepairable failure).As long as the type Ⅰ fai...The maintenance model of simple repairable system is studied.We assume that there are two types of failure,namely type Ⅰ failure(repairable failure)and type Ⅱ failure(irrepairable failure).As long as the type Ⅰ failure occurs,the system will be repaired immediately,which is failure repair(FR).Between the(n-1)th and the nth FR,the system is supposed to be preventively repaired(PR)as the consecutive working time of the system reaches λ^(n-1) T,where λ and T are specified values.Further,we assume that the system will go on working when the repair is finished and will be replaced at the occurrence of the Nth type Ⅰ failure or the occurrence of the first type Ⅱ failure,whichever occurs first.In practice,the system will degrade with the increasing number of repairs.That is,the consecutive working time of the system forms a decreasing generalized geometric process(GGP)whereas the successive repair time forms an increasing GGP.A simple bivariate policy(T,N)repairable model is introduced based on GGP.The alternative searching method is used to minimize the cost rate function C(N,T),and the optimal(T,N)^(*) is obtained.Finally,numerical cases are applied to demonstrate the reasonability of this model.展开更多
We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the proce...We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξ n ) on ?+, and reproduce independently new particles according to a probability law p(ξ n ) on ?. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean E ξ Z(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.展开更多
In this work,for a one-dimensional regime-switching diffusion process,we show that when it is positive recurrent,then there exists a stationary distribution,and when it is null recurrent,then there exists an invariant...In this work,for a one-dimensional regime-switching diffusion process,we show that when it is positive recurrent,then there exists a stationary distribution,and when it is null recurrent,then there exists an invariant measure. We also provide the explicit representation of the stationary distribution and invariant measure based on the hitting times of the process.展开更多
文摘We consider a random walk on Z in random environment with possible jumps {-L,…, -1, 1}, in the case that the environment {ωi : i ∈ Z} are i.i.d.. We establish the renewal theorem for the Markov chain of "the environment viewed from the particle" in both annealed probability and quenched probability, which generalize partially the results of Kesten (1977) and Lalley (1986) for the nearest random walk in random environment on Z, respectively. Our method is based on (L, 1)-RWRE formulated in Hong and Wang the intrinsic branching structure within the (2013).
文摘This paper considers the optimal replacement problem of a repairable system consisting of one component and a single repairman, assume that the system after repair is not 'as good as new', by using the geometric process, we consider a placement policy T based on the age of the system. The problem is to determine the optimal replacement policy T * such that the long_run expected benefit per unit time is maximized. Also, the explicit expression of the long_run expected benefit per unit time can be found. In some conditions, the existence and uniqueness of the optimal policy T * can be proved, finally, we prove that the policy T * is better than the policy T * in .
基金supported by the National Natural Science Foundation of China(61573014)the Fundamental Research Funds for the Central Universities(JB180702).
文摘The maintenance model of simple repairable system is studied.We assume that there are two types of failure,namely type Ⅰ failure(repairable failure)and type Ⅱ failure(irrepairable failure).As long as the type Ⅰ failure occurs,the system will be repaired immediately,which is failure repair(FR).Between the(n-1)th and the nth FR,the system is supposed to be preventively repaired(PR)as the consecutive working time of the system reaches λ^(n-1) T,where λ and T are specified values.Further,we assume that the system will go on working when the repair is finished and will be replaced at the occurrence of the Nth type Ⅰ failure or the occurrence of the first type Ⅱ failure,whichever occurs first.In practice,the system will degrade with the increasing number of repairs.That is,the consecutive working time of the system forms a decreasing generalized geometric process(GGP)whereas the successive repair time forms an increasing GGP.A simple bivariate policy(T,N)repairable model is introduced based on GGP.The alternative searching method is used to minimize the cost rate function C(N,T),and the optimal(T,N)^(*) is obtained.Finally,numerical cases are applied to demonstrate the reasonability of this model.
基金the National Natural Sciente Foundation of China (Grant Nos. 10771021, 10471012)Scientific Research Foundation for Returned Scholars, Ministry of Education of China (Grant No. [2005]564)
文摘We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξ n ) on ?+, and reproduce independently new particles according to a probability law p(ξ n ) on ?. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean E ξ Z(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.
基金supported by National Natural Science Foundation of China(Grant No.11301030)Beijing Higher Education Young Elite Teacher Project
文摘In this work,for a one-dimensional regime-switching diffusion process,we show that when it is positive recurrent,then there exists a stationary distribution,and when it is null recurrent,then there exists an invariant measure. We also provide the explicit representation of the stationary distribution and invariant measure based on the hitting times of the process.