Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution netw...Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution network rush-repair when single resource center cannot meet the emergent resource demands. A multi-resource and multi-center dispatching model is established with the objective of “the shortest repair start-time” and “the least number of the repair centers”. The optimal and worst solutions of each objective are both obtained, and a “proximity degree method” is used to calculate the optimal resource dispatching plan. The feasibility of the proposed algorithm is illustrated by an example of a distribution network fault. The proposed method provides a practical technique for efficiency improvement of fault rush-repair work of distribution network, and thus mostly abbreviates power recovery time and improves the management level of the distribution network.展开更多
This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle...This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle routing of TPSs and RCs is proposed,where the TPSs serve as emergency power supply sources,and the RCs are used to repair the faulted lines.Considering the uncertainty of traffic congestion,the probability distribution of the travel time spent on each road is derived based on the Nesterov user equilibrium model,and a two-stage stochastic program is formulated to determine the optimal routings of TPSs and RCs.To efficiently solve the proposed stochastic mixed-integer linear program(MILP),a two-phase scenario reduction method is then developed to scale down the problem size,and an adaptive progressive hedging algorithm is used for an efficient solution.The effectiveness of the proposed methods and algorithms has been illustrated in a modified IEEE 33-bus system.展开更多
The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users...The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.展开更多
The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achi...The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achieve the largest amount of RDG penetration in ADSs and maintain the optimal operation.This study establishes an alternating current(AC)/direct current(DC)hybrid ADS model that considers the dynamic thermal rating,soft open point,and distribution network reconfiguration(DNR).Moreover,it transforms the optimal dispatching into a second-order cone programming problem.Considering the different control time scales of dispatchable resources,the following two-stage dispatching framework is proposed.d dispatch uses hourly input data with the goal(1)The day-ahea of minimizing the grid loss and RDG dropout.It obtains the optimal 24-hour schedule to determine the dispatching plans for DNR and the energy storage system.(2)The intraday dispatch uses 15-min input data for 1-hour rolling-plan dispatch but only executes the first 15 min of dispatching.To eliminate error between the actual operation and dispatching plan,the first 15 min is divided into three 5-min step-by-step executions.The goal of each step is to trace the tie-line power of the intraday rolling-plan dispatch to the greatest extent at the minimum cost.The measured data are used as feedback input for the rolling-plan dispatch after each step is executed.A case study shows that the comprehensive cooperative ADS model can release the line capacity,reduce losses,and improve the penetration rate of RDGs.Further,the two-stage dispatching framework can handle source-load fluctuations and enhance system stability.展开更多
Since a load of power system changes continuously,the generation also adjusted for supply-demand balance purpose.If there exist more distributed generators in the distribution network,the dispatch strategy becomes mor...Since a load of power system changes continuously,the generation also adjusted for supply-demand balance purpose.If there exist more distributed generators in the distribution network,the dispatch strategy becomes more crucial.The possibility of having numerous controllable microgrids,diesel generator(DG)units and loads for microgrids(MGs)system requires an efficient dispatch strategy in order to balance supply demand for reducing the total cost of the integrated system.In this paper,a method for the dispatch of the distributed generator in distributed power systems has been proposed.The dispatch strategy is such that it keeps a flat voltage profile,reduces the network losses,increases the maximum loading and voltage security margin of the system.The procedure is based on the analysis of continuous power flow.The method is executed on a 34-bus test system.The MATLAB based PSAT packages are used for simulation purpose.展开更多
针对现有配电网鲁棒调度方法缺乏对不确定参数相关性问题的考虑,提出了一种基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法。首先,构建分布式光伏出力的传统多面体集合,利用历史数据驱动形成了相关性包络图,通过弯曲多面体集合...针对现有配电网鲁棒调度方法缺乏对不确定参数相关性问题的考虑,提出了一种基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法。首先,构建分布式光伏出力的传统多面体集合,利用历史数据驱动形成了相关性包络图,通过弯曲多面体集合边界,建立了相关性多面体集合模型。然后,在此基础上,针对相关性多面体集合存在鲁棒性差和保守性大的问题,建立了数据驱动的多面体集合模型。进一步,建立了基于数据驱动多面体集合的交直流混合配电网鲁棒调度模型,并采用列与约束生成(column and constraint generation,CCG)算法对鲁棒调度模型进行求解。最后,改进的IEEE33节点系统仿真结果表明,基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法可以减少优化结果的保守性,提高其鲁棒性,证明了所提出方法的有效性。展开更多
文摘Confronted with the requirement of higher efficiency and higher quality of distribution network fault rush-repair, the subject addressed in this paper is the optimal resource dispatching issue of the distribution network rush-repair when single resource center cannot meet the emergent resource demands. A multi-resource and multi-center dispatching model is established with the objective of “the shortest repair start-time” and “the least number of the repair centers”. The optimal and worst solutions of each objective are both obtained, and a “proximity degree method” is used to calculate the optimal resource dispatching plan. The feasibility of the proposed algorithm is illustrated by an example of a distribution network fault. The proposed method provides a practical technique for efficiency improvement of fault rush-repair work of distribution network, and thus mostly abbreviates power recovery time and improves the management level of the distribution network.
基金supported by National Natural Science Foundation of China(No.72171026).
文摘This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle routing of TPSs and RCs is proposed,where the TPSs serve as emergency power supply sources,and the RCs are used to repair the faulted lines.Considering the uncertainty of traffic congestion,the probability distribution of the travel time spent on each road is derived based on the Nesterov user equilibrium model,and a two-stage stochastic program is formulated to determine the optimal routings of TPSs and RCs.To efficiently solve the proposed stochastic mixed-integer linear program(MILP),a two-phase scenario reduction method is then developed to scale down the problem size,and an adaptive progressive hedging algorithm is used for an efficient solution.The effectiveness of the proposed methods and algorithms has been illustrated in a modified IEEE 33-bus system.
基金supported in part by the State Grid Scientific and Technological Projects of China(No.SGTYHT/21-JS-223)in part by the National Natural Science Foundation of China(No.52277118),in part by the Tianjin Science and Technology Planning Project(No.22ZLGCGX00050)in part by the 67th Postdoctoral Fund and Independent Innovation Fund of Tianjin University in 2021.
文摘The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.
基金supported by Universiti Sains Malaysia through Research University Team(RUTeam)Grant Scheme(No.1001/PELECT/8580011)。
文摘The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achieve the largest amount of RDG penetration in ADSs and maintain the optimal operation.This study establishes an alternating current(AC)/direct current(DC)hybrid ADS model that considers the dynamic thermal rating,soft open point,and distribution network reconfiguration(DNR).Moreover,it transforms the optimal dispatching into a second-order cone programming problem.Considering the different control time scales of dispatchable resources,the following two-stage dispatching framework is proposed.d dispatch uses hourly input data with the goal(1)The day-ahea of minimizing the grid loss and RDG dropout.It obtains the optimal 24-hour schedule to determine the dispatching plans for DNR and the energy storage system.(2)The intraday dispatch uses 15-min input data for 1-hour rolling-plan dispatch but only executes the first 15 min of dispatching.To eliminate error between the actual operation and dispatching plan,the first 15 min is divided into three 5-min step-by-step executions.The goal of each step is to trace the tie-line power of the intraday rolling-plan dispatch to the greatest extent at the minimum cost.The measured data are used as feedback input for the rolling-plan dispatch after each step is executed.A case study shows that the comprehensive cooperative ADS model can release the line capacity,reduce losses,and improve the penetration rate of RDGs.Further,the two-stage dispatching framework can handle source-load fluctuations and enhance system stability.
文摘Since a load of power system changes continuously,the generation also adjusted for supply-demand balance purpose.If there exist more distributed generators in the distribution network,the dispatch strategy becomes more crucial.The possibility of having numerous controllable microgrids,diesel generator(DG)units and loads for microgrids(MGs)system requires an efficient dispatch strategy in order to balance supply demand for reducing the total cost of the integrated system.In this paper,a method for the dispatch of the distributed generator in distributed power systems has been proposed.The dispatch strategy is such that it keeps a flat voltage profile,reduces the network losses,increases the maximum loading and voltage security margin of the system.The procedure is based on the analysis of continuous power flow.The method is executed on a 34-bus test system.The MATLAB based PSAT packages are used for simulation purpose.
文摘针对现有配电网鲁棒调度方法缺乏对不确定参数相关性问题的考虑,提出了一种基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法。首先,构建分布式光伏出力的传统多面体集合,利用历史数据驱动形成了相关性包络图,通过弯曲多面体集合边界,建立了相关性多面体集合模型。然后,在此基础上,针对相关性多面体集合存在鲁棒性差和保守性大的问题,建立了数据驱动的多面体集合模型。进一步,建立了基于数据驱动多面体集合的交直流混合配电网鲁棒调度模型,并采用列与约束生成(column and constraint generation,CCG)算法对鲁棒调度模型进行求解。最后,改进的IEEE33节点系统仿真结果表明,基于数据驱动多面体集合的交直流混合配电网鲁棒调度方法可以减少优化结果的保守性,提高其鲁棒性,证明了所提出方法的有效性。