The failed components of repairable systems are replaced with spare parts that may have different failure distributions from those of the components that have failed. The spare parts may be either the same as new, bet...The failed components of repairable systems are replaced with spare parts that may have different failure distributions from those of the components that have failed. The spare parts may be either the same as new, better than new, or worse than new. This is the reality in maintenance engineering. Repair with better spare parts is defined as "super repair". The failure distributions of the spare parts affect the availability of the components and their systems. A novel model is proposed to describe the availability of repairable systems across their operating time, at the level of their components, on the assumption that the failed components are immediately replaced. The model functions with arbitrary failure distributions of spare parts. It can be used to compute the availability of components and systems not only under perfect and imperfect repair but also under super repair.展开更多
Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.A...Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.An inventory configuration optimization model of two-echelon spares support system was proposed which took the spares expected shortfall as the object and made the minimum repairable parts expected shortfall instead of the maximum spares supportability as the objective function.Marginal efficiency analysis algorithm was applied to optimizing the spares configuration and generating a rational spares inventory configuration.Finally,several examples are given to verify the model.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripher...Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.展开更多
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ...Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso...Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.展开更多
Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Walle...Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.展开更多
Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in viv...Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.展开更多
This paper deals with a type of servicing machines model, which service station has a life time of the kth Er-langian distribution and can be repaired just like a new one. The cyclic time and the inefficiency quantiti...This paper deals with a type of servicing machines model, which service station has a life time of the kth Er-langian distribution and can be repaired just like a new one. The cyclic time and the inefficiency quantities of this system in equilibrium are obtained.展开更多
This paper deals with a cold standby repairman who can do extra work in idle time. The repairable system with two identical units and one authors are devoted to studying the unique existence and exponential stability ...This paper deals with a cold standby repairman who can do extra work in idle time. The repairable system with two identical units and one authors are devoted to studying the unique existence and exponential stability of the system solution. C0-semigroup theory is used to prove the existence of a unique nonnegative time-dependent solution of the system. Then by using the theory of resolvent positive operator, the authors derive that dynamic solution of the system exponentially converges to its steady-state one which is the eigenfunction corresponding to eigenvalue 0 of the system operator. Some reliability indices of the system are discussed with a different method from traditional one. The authors also make a profit analysis to determine the optimal service time outside the system to maximize the system profit.展开更多
Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system ca...Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system can be used to model the dynamics of a repairable system whose performance regimes switch according to the external conditions. For example, to satisfy the demand variation that is typical for the power and communication systems and reduce the cost, these systems usually adjust their operating regimes. The transition rate matrices under distinct operating regimes are assumed to be different and the sojourn times in distinct regimes are governed by a finite state Markov chain. By using the theory of Markov process, Ion channel theory, and Laplace transforms, the up time of the system are studied. A numerical example is given to illustrate the obtained results. The effect of sojourn times in distinct regimes on the availability and the up time are also discussed in the numerical example.展开更多
The new model for parallel repairable system is introduced, and it is based on the practice problems of maintenance and the idea of Ion-Channel modeling. In the new model, repair times that are sufficiently short (le...The new model for parallel repairable system is introduced, and it is based on the practice problems of maintenance and the idea of Ion-Channel modeling. In the new model, repair times that are sufficiently short (less than some critical value) do not result in system failure, and such a repair interval is omitted from the downtime record. Usually, the underlying process is Markov process if the durations of working and repair time have the negative-exponential distributions, but the new system has not the Markov properties, which is worth to study. The reliability indexes such as instantaneous availability and steady-state availabilities for the new system are given through probability analysis. A numerical example is given to illustrate the results.展开更多
As is the case in all parts of gastroenterology and hepatology,there have been many advances in our knowledge and understanding of small intestinal diseases.Over 1000 publications were reviewed for 2008 and 2009,and t...As is the case in all parts of gastroenterology and hepatology,there have been many advances in our knowledge and understanding of small intestinal diseases.Over 1000 publications were reviewed for 2008 and 2009,and the important advances in basic science as well as clinical applications were considered.In Part Ⅰ of this Editorial Review,seven topics are considered:intestinal development;proliferation and repair;intestinal permeability;microbiotica,infectious diarrhea and probiotics;diarrhea;salt and water absorption;necrotizing enterocolitis;and immunology/allergy.These topics were chosen because of their importance to the practicing physician.展开更多
The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder weldin...The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder welding method is used for surface damage repairing of inner hole parts in this paper. The working principle and process of the technology are illustrated,and the microstructure and property of repairing layer by precise pulse plasma powder welding and CO2 gas shielded welding are tested and observed by microscope,micro hardness tester and X-ray residual stress tester etc. Results showed that the substrate deformation of thin-walled inner hole parts samples by precise pulse plasma powder welding is relatively small. The repair layer and substrate is metallurgical bonding,the transition zones( including fusion zone and heat affected zone) are relatively narrow and the welding quality is good. It showed that the thin-walled inner hole parts can be repaired by this technology and equipment.展开更多
A two-stage directed Semi-Markov repairable network system is presented in this paper to model the performance of many transmission systems, such as power or oil transmission network, water or gas supply network, etc....A two-stage directed Semi-Markov repairable network system is presented in this paper to model the performance of many transmission systems, such as power or oil transmission network, water or gas supply network, etc. The availability of the system is discussed by using Markov renewal theory, Laplace transform and probability analysis methods. A numerical example is given to illustrate the results obtained in the paper.展开更多
The availability equivalence factors of a general repairable parallel-series system are discussed in this paper considering the availability function of the system. The system components are assumed to be repairable a...The availability equivalence factors of a general repairable parallel-series system are discussed in this paper considering the availability function of the system. The system components are assumed to be repairable and independent but not identical. The life and repair times of the system components are exponentially distributed with different parameters. Two types of availability equivalent factors of the system are derived. The results derived in this paper generalize those given in the literature. A numerical example is introduced to illustrate how the idea of this work can be applied.展开更多
The optimal replacement model for the repairable queueing system con-sisting of single electrical equipment of automatic steel rolling is studied. Assumingthat the equipment after repair is not “as goed as new” , by...The optimal replacement model for the repairable queueing system con-sisting of single electrical equipment of automatic steel rolling is studied. Assumingthat the equipment after repair is not “as goed as new” , by using geometric pro-cess, we take the n展开更多
To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,...To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,and obtains calculating formulas of reliability and availability of the system by solving differential equations.In this paper,the failure rates are expressed in polynomial configuration.The constant,linear and Weibull failure rate are in their special form.The polynomial failure rates provide flexibility in modeling the practical time-varying failure rates.展开更多
In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system ...In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system because the rate of occurrence of failures (ROCOF) of the system changes over time rather than remains stable. However, from a practical point of view, it is always preferred to apply the simplest method to address problems and to obtain useful practical results. Therefore, we attempted to use the HPP model to analyze the failure data from real repairable systems. A graphic method and the Laplace test were also used in the analysis. Results of numerical applications show that the HPP model may be a useful tool for the entire life cycle of repairable systems.展开更多
文摘The failed components of repairable systems are replaced with spare parts that may have different failure distributions from those of the components that have failed. The spare parts may be either the same as new, better than new, or worse than new. This is the reality in maintenance engineering. Repair with better spare parts is defined as "super repair". The failure distributions of the spare parts affect the availability of the components and their systems. A novel model is proposed to describe the availability of repairable systems across their operating time, at the level of their components, on the assumption that the failed components are immediately replaced. The model functions with arbitrary failure distributions of spare parts. It can be used to compute the availability of components and systems not only under perfect and imperfect repair but also under super repair.
文摘Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.An inventory configuration optimization model of two-echelon spares support system was proposed which took the spares expected shortfall as the object and made the minimum repairable parts expected shortfall instead of the maximum spares supportability as the objective function.Marginal efficiency analysis algorithm was applied to optimizing the spares configuration and generating a rational spares inventory configuration.Finally,several examples are given to verify the model.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金supported by grants from the Lone Star Paralysis Foundation,NIH R01NS081063Department of Defense award W81XWH-19-2-0054 to GDB+2 种基金supported by University of Wyoming Startup funds,Department of Defense grant W81XWH-17-1-0402the University of Wyoming Sensory Biology COBRE under National Institutes of Health(NIH)award number 5P20GM121310-02the National Institute of General Medical Sciences of the NIH under award number P20GM103432 to JSB。
文摘Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.
基金supported by the Lorenz B?hler Fonds,#2/19 (obtained by the Neuroregeneration Group,Ludwig Boltzmann Institute for Traumatology)the City of Vienna project ImmunTissue,MA23#30-11 (obtained by the Department Life Science Engineering,University of Applied Sciences Technikum Wien)。
文摘Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
文摘Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.
基金supported by DOD AFIRMⅢW81XWH-20-2-0029 subcontract,UT POC19-1774-13Neuraptive Therapeutics Inc.26-7724-56+1 种基金NIH R01-NS128086 grantsLone Star Paralysis gift(to GDB)。
文摘Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.
基金supported by the Natural Science Foundation of Fujian Province,No.2020J02027the National Natural Science Foundation of China,No.31970461the Foundation of NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,Fujian Maternity and Child Health Hospital,No.2022-NHP-05(all to WC).
文摘Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
文摘This paper deals with a type of servicing machines model, which service station has a life time of the kth Er-langian distribution and can be repaired just like a new one. The cyclic time and the inefficiency quantities of this system in equilibrium are obtained.
基金supported by the National Natural Science Foundation of China under Grant No.11201007
文摘This paper deals with a cold standby repairman who can do extra work in idle time. The repairable system with two identical units and one authors are devoted to studying the unique existence and exponential stability of the system solution. C0-semigroup theory is used to prove the existence of a unique nonnegative time-dependent solution of the system. Then by using the theory of resolvent positive operator, the authors derive that dynamic solution of the system exponentially converges to its steady-state one which is the eigenfunction corresponding to eigenvalue 0 of the system operator. Some reliability indices of the system are discussed with a different method from traditional one. The authors also make a profit analysis to determine the optimal service time outside the system to maximize the system profit.
基金supported by the National Natural Science Foundation of China (71071020 60705036)Beijing Excellent Doctoral Dissertation Instructor Project of Humanities and Social Sciences(yb20091000701)
文摘Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system can be used to model the dynamics of a repairable system whose performance regimes switch according to the external conditions. For example, to satisfy the demand variation that is typical for the power and communication systems and reduce the cost, these systems usually adjust their operating regimes. The transition rate matrices under distinct operating regimes are assumed to be different and the sojourn times in distinct regimes are governed by a finite state Markov chain. By using the theory of Markov process, Ion channel theory, and Laplace transforms, the up time of the system are studied. A numerical example is given to illustrate the obtained results. The effect of sojourn times in distinct regimes on the availability and the up time are also discussed in the numerical example.
基金Sponsored bythe National Natural Science Foundation of China(70671009)the Postgraduate Science and Innovation Project of Beijing Instituteof Technology (GC200818)
文摘The new model for parallel repairable system is introduced, and it is based on the practice problems of maintenance and the idea of Ion-Channel modeling. In the new model, repair times that are sufficiently short (less than some critical value) do not result in system failure, and such a repair interval is omitted from the downtime record. Usually, the underlying process is Markov process if the durations of working and repair time have the negative-exponential distributions, but the new system has not the Markov properties, which is worth to study. The reliability indexes such as instantaneous availability and steady-state availabilities for the new system are given through probability analysis. A numerical example is given to illustrate the results.
文摘As is the case in all parts of gastroenterology and hepatology,there have been many advances in our knowledge and understanding of small intestinal diseases.Over 1000 publications were reviewed for 2008 and 2009,and the important advances in basic science as well as clinical applications were considered.In Part Ⅰ of this Editorial Review,seven topics are considered:intestinal development;proliferation and repair;intestinal permeability;microbiotica,infectious diarrhea and probiotics;diarrhea;salt and water absorption;necrotizing enterocolitis;and immunology/allergy.These topics were chosen because of their importance to the practicing physician.
文摘The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder welding method is used for surface damage repairing of inner hole parts in this paper. The working principle and process of the technology are illustrated,and the microstructure and property of repairing layer by precise pulse plasma powder welding and CO2 gas shielded welding are tested and observed by microscope,micro hardness tester and X-ray residual stress tester etc. Results showed that the substrate deformation of thin-walled inner hole parts samples by precise pulse plasma powder welding is relatively small. The repair layer and substrate is metallurgical bonding,the transition zones( including fusion zone and heat affected zone) are relatively narrow and the welding quality is good. It showed that the thin-walled inner hole parts can be repaired by this technology and equipment.
文摘A two-stage directed Semi-Markov repairable network system is presented in this paper to model the performance of many transmission systems, such as power or oil transmission network, water or gas supply network, etc. The availability of the system is discussed by using Markov renewal theory, Laplace transform and probability analysis methods. A numerical example is given to illustrate the results obtained in the paper.
文摘The availability equivalence factors of a general repairable parallel-series system are discussed in this paper considering the availability function of the system. The system components are assumed to be repairable and independent but not identical. The life and repair times of the system components are exponentially distributed with different parameters. Two types of availability equivalent factors of the system are derived. The results derived in this paper generalize those given in the literature. A numerical example is introduced to illustrate how the idea of this work can be applied.
文摘The optimal replacement model for the repairable queueing system con-sisting of single electrical equipment of automatic steel rolling is studied. Assumingthat the equipment after repair is not “as goed as new” , by using geometric pro-cess, we take the n
文摘To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,and obtains calculating formulas of reliability and availability of the system by solving differential equations.In this paper,the failure rates are expressed in polynomial configuration.The constant,linear and Weibull failure rate are in their special form.The polynomial failure rates provide flexibility in modeling the practical time-varying failure rates.
文摘In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system because the rate of occurrence of failures (ROCOF) of the system changes over time rather than remains stable. However, from a practical point of view, it is always preferred to apply the simplest method to address problems and to obtain useful practical results. Therefore, we attempted to use the HPP model to analyze the failure data from real repairable systems. A graphic method and the Laplace test were also used in the analysis. Results of numerical applications show that the HPP model may be a useful tool for the entire life cycle of repairable systems.