期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique 被引量:2
1
作者 Muhammad Nouman Amjad Raja Sanjay Kumar Shukla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期899-911,共13页
In the recent past,the potential benefits of wraparound geosynthetic reinforcement technique for constructing the reinforced soil foundations have been reported.This paper presents the experimental study on the behavi... In the recent past,the potential benefits of wraparound geosynthetic reinforcement technique for constructing the reinforced soil foundations have been reported.This paper presents the experimental study on the behaviour of model strip footing resting on sandy soil bed reinforced with geosynthetic in wraparound and planar forms under monotonic and repeated loadings.The geosynthetic layers were laid according to the reinforcement ratio to minimise the scale effect.It is found that for the same amount of reinforcement material,the wraparound reinforced model resulted in less settlement in comparison to planar reinforced models.The efficiency of wraparound reinforced model increased with the increase in load amplitude and the rate of total cumulative settlement substantially decreased with the increase in number of load cycles.The wraparound reinforced model has shown about 45% lower average total settlement in comparison to unreinforced model,while the double-layer reinforced model has about 41% lower average total settlement at the cost of approximately twice the material and 1.5 times the occupied land width ratio.Moreover,wraparound models have shown much greater stability in comparison to their counterpart models when subjected to incremental repeated loading. 展开更多
关键词 GEOSYNTHETICS repeated loads Wraparound reinforcement technique Model tests Footing settlement Bearing capacity Reinforcement ratio Strip footing
下载PDF
A Mechanical Model for Three-phase Permanent Deformation of Asphalt Mixture under Repeated Load 被引量:2
2
作者 赵永利 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第6期1001-1003,共3页
On basis of the Burgers model, a new model consisting of modified dashpot and Van Der Poel model was derived from rheological and viscoelastic theory. Subsequently, triaxial repeated load permanent deformation tests o... On basis of the Burgers model, a new model consisting of modified dashpot and Van Der Poel model was derived from rheological and viscoelastic theory. Subsequently, triaxial repeated load permanent deformation tests of AC16 asphalt mixtures were conducted to validate this new developed model. Parameters of new developed model were obtained by a nonlinear regression analysis of test data, and then permanent strains and flow number of each mixture were calculated. The experimental results prove that the new developed model can well describe three phases permanent deformation of asphalt mixture under repeated load and it can be used for pavement mechanical analysis and rutting prediction. 展开更多
关键词 asphalt mixture permanent deformation three phases theory triaxial repeated load
下载PDF
Experimental study on permanent deformation characteristics of coarse-grained soil under repeated dynamic loading 被引量:3
3
作者 Huihao Mei Sajjad Satvati Wuming Leng 《Railway Engineering Science》 2021年第1期94-107,共14页
Practical assessment of subgrade settlement induced by train operation requires developing suitable models capable of describing permanent deformation characteristics of subgrade filling under repeated dynamic loading... Practical assessment of subgrade settlement induced by train operation requires developing suitable models capable of describing permanent deformation characteristics of subgrade filling under repeated dynamic loading.In this paper,repeated load triaxial tests were performed on coarse-grained soil(CGS),and the axial permanent strain of CGS under different confining pressures and dynamic stress amplitudes was analysed.Permanent deformation behaviors of CGS were categorized based on the variation trend of permanent strain rate with accumulated permanent strain and the shakedown theory.A prediction model of permanent deformation considering stress state and number of load cycles was established,and the ranges of parameters for different types of dynamic behaviors were also divided.The results indicated that the variational trend of permanent strain rate with accumulated permanent strain can be used as a basis for classifying dynamic behaviors of CGS.The stress state(confining pressure and dynamic stress amplitude)has significant effects on the permanent strain rate.The accumulative characteristics of permanent deformation of CGS with the number of load cycles can be described by a power function,and the model parameters can reflect the influence of confining pressure and dynamic stress amplitude.The study’s results could help deepen understanding of the permanent deformation characteristics of CGS. 展开更多
关键词 repeated load triaxial tests Coarse grained soil Shakedown theory Dynamic stress Accumulated permanent strain Railway subgrade
下载PDF
Permanent Deformation of Highway Subgrade Soils
4
作者 邱延峻 《Journal of Modern Transportation》 1999年第1期32-43,共12页
Based on a comprehensive review of the literature and preliminary testing performed on a subgrade soil, a testing methodology for repeated load testing was established. This testing protocol was verified using data f... Based on a comprehensive review of the literature and preliminary testing performed on a subgrade soil, a testing methodology for repeated load testing was established. This testing protocol was verified using data from subgrade soil. The successful application of this testing protocol on the two subgrade soils proves that it can provide consistent, reliable results. A power model was used to fit the accumulated axial strain over load repetitions with the first hundred cycles excluded from the data set. A number of factors influencing the accumulation of permanent deformation were investigated. The results indicate that confining pressure, load frequency and density are relatively minor contributors to deformation accumulation. Moisture content, deviator stress and first cycle freeze thaw are major factors governing permanent deformation. The effects of stress history resulting from staged loading are dependent upon the level of applied deviator stress. The interpretation of the rich and consistent deformation data derived from this testing protocol provide valuable insights for transportation engineers relative to the design, construction, operation and maintenance strategy of highway subgrades as well as railway roadbeds. 展开更多
关键词 DEFORMATION pavements and roads repeated loading
下载PDF
Effect of Water Content and Grains Size Distribution on the Characteristic Resilient Young’s Modulus (<i>E<sub>c</sub></i>) Obtained Using Anisotropic Boyce Model on Gravelly Lateritic Soils from Tropical Africa (Burkina Faso and Senegal)
5
作者 Bibalo Ida Josiane Ki Makhaly Ba +2 位作者 Rokhaya Gueye Pierre Hornych Ali Sana 《Open Journal of Civil Engineering》 2021年第1期134-152,共19页
T<span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">his research was carried out to determine the rheological parameters of later... T<span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">his research was carried out to determine the rheological parameters of lateritic soils in order to contribute to the improvement of the technical documents used for pavement design in tropical Africa. The study is based on the loading repeated of cyclic triaxial tests (LRT) performed at </span><span style="font-family:Verdana;">University Gustave Eiffel (formerly Institut Fran<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#231;</span>ais des Sciences et Technologies des Transports de l’Aménagement et des Réseaux (IFSTTAR))</span></span></span></span><span><span><span><span style="font-family:;" "=""> </span></span></span></span><span></span><span><span><span style="font-family:Verdana;">in Nantes with the application of the European standard EN 13286-7: 2004</span><span style="font-family:Verdana;"> [<a href="#ref1">1</a>]</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. The tests were performed at constant confinement stress and using the stepwise method to determine the resilient axial (<img src="Edit_9d1c29ae-1a5f-434a-9fe3-00ef5aeb5d24.png" alt="" /></span></span></span><span><span><span style="font-family:;" "=""><span><span style="font-family:Verdana;">) and radial (<img src="Edit_42548459-8f50-4ea1-832d-25e9cfdad034.png" alt="" /></span><span style="font-family:Verdana;">) deformation as a function of the axial and radial stresses. Four gravel lateritic soil</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> from different sites selected in Burkina Faso and Senegal were the subject of this research for the triaxial tests. These materials have a maximum diameter of 20 mm and a percentage of fines less than 20%. The LRT tests were carried out on samples compacted at three moisture contents (</span><i><span style="font-family:Verdana;">w</span><sub><span style="font-family:Verdana;">opm</span></sub></i> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 2%, </span><i><span style="font-family:Verdana;">w</span><sub><span style="font-family:Verdana;">opm</span></sub></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">w</span><sub><span style="font-family:Verdana;">opm</span></sub> </i><span style="font-family:Verdana;">+ 2%) and at 95% and 100% of optimal dry density (</span></span></span></span><span><span><i><span style="font-family:;" "=""><span style="font-family:Verdana;">γ</span><sub><span style="font-family:Verdana;">dopm</span></sub></span></i></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">). Test results showed that the characteristic resilient Young’s modulus (</span><i><span style="font-family:Verdana;">E</span><sub><span style="font-family:Verdana;">c</span></sub></i><span style="font-family:Verdana;">) of gravelly laterites soils depends on the compacted water content and the variation of the grains size distribution (sand (</span><i><span style="font-family:Verdana;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#248;</span></span></i><span style="font-family:Verdana;"> < 2 mm), motor (</span><i><span style="font-family:Verdana;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#248;</span></span></i><span style="font-family:Verdana;"> < 0.5 mm) and fines content (</span><i><span style="font-family:Verdana;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#248;</span></span></i><span style="font-family:Verdana;"> < 0.063 mm) obtained after (LRT). Materials with a high percent of fines (>20%), mortar and sand (Sindia and Lam-Lam) are more sensitive to variations in water content. The presence of water combined with the excess of fines leads to a decrease in modulus around 25% for Lam-Lam and 20.2% for Sindia. Materials containing a low percent of fines, mortar and sand (Badnogo and Dedougou) behave differently. </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">And </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the resilient modulus increases about 225</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">67% for Badnogo and 312.24% for Dedougou with the rise of the water content for approximately unchanged the percentage of fines, mortar and sand. Granularity therefore has an indirect influence on the resilient modulus of the lateritic soils by controlling the effects of water on the entire system. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Results of statistical analysis and coefficients of correlation (0.659 to 0.865) showed that the anisotropic Boyce’s model </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is suitable to predict</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the volumetric </span><span style="font-family:Verdana;">(<img src="Edit_1a36888c-cad0-4f1c-9c68-b5da0ddc323f.png" alt="" /></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> and deviatoric strain (<img src="Edit_993added-0ec4-49db-ae12-3e540fa49f9c.png" alt="" /></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> with stress path (Δ</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">q</span></i></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">/Δ</span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;">) of the lateritic soils. </span><span><span style="font-family:Verdana;">The predicted </span><i><span style="font-family:Verdana;">E</span><sub><span style="font-family:Verdana;">r</span></sub></i><span style="font-family:Verdana;"> resilient Young’s modulus from anisotropic Boyce’s model varies according to the evolution of </span></span><span style="font-family:Verdana;">the bulk stress (<img src="Edit_ab550c56-8bab-4806-9ec7-fab794d785eb.png" alt="" /></span><span style="font-family:Verdana;">). A correlation around 0.9 is obtained from the power law model.</span></span></span></span></span> 展开更多
关键词 Lateritic Soil Cyclic Triaxial with repeated Loading (LRT) Characteristic Resilient Young’s Modulus Anisotropic Boyce Model Water Content Grains Size Distribution
下载PDF
Crushed rocks stabilized with organosilane and lignosulfonate in pavement unbound layers:Repeated load triaxial tests
6
作者 Diego Maria BARBIERI Inge HOFF Chun-Hsing HO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第2期412-424,共13页
The creation of the new“Ferry-Free Coastal Highway Route E39”in southwest Norway entails the production of a remarkable quantity of crushed rocks.These resources could be beneficially employed as aggregates in the u... The creation of the new“Ferry-Free Coastal Highway Route E39”in southwest Norway entails the production of a remarkable quantity of crushed rocks.These resources could be beneficially employed as aggregates in the unbound courses of the highway itself or other road pavements present nearby.Two innovative stabilizing agents,organosilane and lignosulfonate,can significantly enhance the key properties,namely,resilient modulus and resistance against permanent deformation,of the aggregates that are excessively weak in their natural state.The beneficial effect offered by the additives was thoroughly evaluated by performing repeated load triaxial tests.The study adopted the most common numerical models to describe these two key mechanical properties.The increase in the resilient modulus and reduction in the accumulated vertical permanent deformation show the beneficial impact of the additives.Furthermore,a finite element model was created to simulate the repeated load triaxial test by implementing nonlinear elastic and plastic constitutive relationships. 展开更多
关键词 ORGANOSILANE LIGNOSULFONATE crushed rocks pavement unbound layers repeated load triaxial test finite element analysis
原文传递
Effect of mineral admixtures and repeated loading on chloride migration through concrete
7
作者 Wu-man ZHANG Heng-jing BA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第9期683-690,共8页
The effect of fly ash (FA) and ground granulated blast furnace slag (GGBFS) on chloride migration through concrete subjected to repeated loading was examined. Portland cement was replaced by three percentages (20%, 30... The effect of fly ash (FA) and ground granulated blast furnace slag (GGBFS) on chloride migration through concrete subjected to repeated loading was examined. Portland cement was replaced by three percentages (20%, 30%, and 40%) of mineral admixtures. Five repeated loadings were applied to concrete specimens using a WHY series fully automatic testing machine. The maximum loadings were 40% and 80% of the axial cylinder compressive strength (f′c). Chloride migration through concretes was evaluated using the rapid chloride migration test and the chloride concentration in the anode chamber was measured. The results showed that the replacement percentages of mineral admixtures, the curing time and repeated loading had a significant effect on chloride migration through concrete. The transport number of chloride through concrete cured for 28 d increased with increasing FA replacement and markedly decreased with extension of the curing time. 20% and 30% GGBFS replacement decreased the transport number of chloride through concrete, but 40% GGBFS replacement increased the transport number. Five repeated loadings at 40% or 80% f′c increased the transport number of chloride for all mixes. 展开更多
关键词 CONCRETE Fly ash (FA) Ground granulated blast furnace slag (GGBFS) Chloride migration repeated loading
原文传递
Assessing the Resilient Behavior of Recycled Mix-granulate with Repeated Load CBR Testing
8
作者 ARAY A A A MOLENAAR A A A HOUBEN L J M 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第17期89-93,共5页
A new characterization technique,a repeated load CBR test,was used to evaluate the resilient properties recycled mix-granulate unbound base material. This is a mixture of crushed concrete and crushed masonry,so recycl... A new characterization technique,a repeated load CBR test,was used to evaluate the resilient properties recycled mix-granulate unbound base material. This is a mixture of crushed concrete and crushed masonry,so recycled demolition waste,this is used on a wide scale in the Netherlands as road base material. The repeated load CBR test,done with standard CBR testing facility,was conducted to estimate the resilient modulus. For comparison and assessment purposes the tests were carried out with the same material conditions (composition,grading,moisture and compaction degree) as have been applied in earlier triaxial testing in the Road and Railway Engineering Laboratory,Delft University of Technology. The results indicate that the repeated load CBR test yields a good estimate of the stress dependent equivalent modulus for the sample material as bulk,which can be used in mechanistic pavement analysis in the absence of triaxial test results. 展开更多
关键词 repeated load CBR TRIAXIAL resilient modulus recycled mix-granulate
原文传递
Performances of hydrated cement treated crushed rock base for Western Australian roads 被引量:2
9
作者 Suphat Chummuneerat Peerapong Jitsangiam Hamid Nikraz 《Journal of Traffic and Transportation Engineering(English Edition)》 2014年第6期432-438,共7页
The resilient modulus (RM) of hydrated cement treated crushed rock base (HCTCRB) affected by amount of hydration periods, compaction and dryback processes was presented using repeated load triaxial tests. The rela... The resilient modulus (RM) of hydrated cement treated crushed rock base (HCTCRB) affected by amount of hydration periods, compaction and dryback processes was presented using repeated load triaxial tests. The related trends of RM corresponding to the different hydration periods still cannot be concluded. Instead, It is found that the moisture content plays more major influence on the RM performance. Higher additional water during compaction of HCTCRB, even at its optimum moisture content and induced higher dry density, led to the inferior RM performance compared to the sample without water addition. The RM of damper samples can be improved through dryback process and superior to that of the sample without water addition at the same moisture content. However, the samples withut water addition during compaction deliver the comparable RM values even its dry density is lower than the other two types. These results indicate the significant influence of moisture content to the performances of HCTCRB with regardless of the dry density. Finally, the experimental results of HCT- CRB and parent material are evaluated with the K-O model and the model recommended by Austroads. These two models provide the excellent fit of the tested results with high degree of determination. 展开更多
关键词 base course hydrated cement treated crushed rock base cement modified material repeated load triaxial test resilient modulus PAVEMENT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部