This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
Time-delay phenomena extensively exist in practical systems,e.g.,multi-agent systems,bringing negative impacts on their stabilities.This work analyzes a collaborative control problem of redundant manipulators with tim...Time-delay phenomena extensively exist in practical systems,e.g.,multi-agent systems,bringing negative impacts on their stabilities.This work analyzes a collaborative control problem of redundant manipulators with time delays and proposes a time-delayed and distributed neural dynamics scheme.Under assumptions that the network topology is fixed and connected and the existing maximal time delay is no more than a threshold value,it is proved that all manipulators in the distributed network are able to reach a desired motion.The proposed distributed scheme with time delays considered is converted into a time-variant optimization problem,and a neural dynamics solver is designed to solve it online.Then,the proposed neural dynamics solver is proved to be stable,convergent and robust.Additionally,the allowable threshold value of time delay that ensures the proposed scheme’s stability is calculated.Illustrative examples and comparisons are provided to intuitively prove the validity of the proposed neural dynamics scheme and solver.展开更多
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
基金supported in part by the National Natural Science Foundation of China (62176109)the Natural Science Foundation of Gansu Province(21JR7RA531)+7 种基金the Team Project of Natural Science Foundation of Qinghai Province China (2020-ZJ-903)the State Key Laboratory of Integrated Services Networks (ISN23-10)the Gansu Provincial Youth Doctoral Fund of Colleges and Universities (2021QB-003)the Fundamental Research Funds for the Central Universities (lzujbky-2021-65)the Supercomputing Center of Lanzhou Universitythe Natural Science Foundation of Chongqing(cstc2019jcyjjq X0013)the CAAIHuawei Mind Spore Open Fund (CAAIXS JLJJ-2021-035A)the Pioneer Hundred Talents Program of Chinese Academy of Sciences
文摘Time-delay phenomena extensively exist in practical systems,e.g.,multi-agent systems,bringing negative impacts on their stabilities.This work analyzes a collaborative control problem of redundant manipulators with time delays and proposes a time-delayed and distributed neural dynamics scheme.Under assumptions that the network topology is fixed and connected and the existing maximal time delay is no more than a threshold value,it is proved that all manipulators in the distributed network are able to reach a desired motion.The proposed distributed scheme with time delays considered is converted into a time-variant optimization problem,and a neural dynamics solver is designed to solve it online.Then,the proposed neural dynamics solver is proved to be stable,convergent and robust.Additionally,the allowable threshold value of time delay that ensures the proposed scheme’s stability is calculated.Illustrative examples and comparisons are provided to intuitively prove the validity of the proposed neural dynamics scheme and solver.