期刊文献+
共找到44,378篇文章
< 1 2 250 >
每页显示 20 50 100
Repetitive Control Uncertainty Conditions in State Feedback Solution
1
作者 Muhammad Alsubaie Mubarak Alhajri Tarek Altowaim 《Intelligent Control and Automation》 2018年第4期95-106,共12页
Repetitive Control (RC) designed with state feedback that includes past error feedforward and current error feedback schemes for linear time-invariant systems is reintroduced. Periodic disturbances are common within r... Repetitive Control (RC) designed with state feedback that includes past error feedforward and current error feedback schemes for linear time-invariant systems is reintroduced. Periodic disturbances are common within repetitive systems and can be represented with a time-delay model. The proposed design focuses on isolating the disturbance model and finding the overall transfer function around the delay model. The use of the small gain theorem around the delay model assures disturbance accommodation if stability conditions are achieved. This paper reintroduces the designed RC controller within the state feedback in the presence of both past error and current error structures. Robustness conditions are investigated and set to enhance system performance in the presence of modelling mismatch, which represents the novel contribution in this paper. Simulations demonstrate the advantages of the robust conditions obtained while improving system performance for dynamic perturbations. 展开更多
关键词 repetitive Control uncertainty SINGULAR VALUES
下载PDF
Repetitive transcranial magnetic stimulation in Alzheimer’s disease:effects on neural and synaptic rehabilitation
2
作者 Yi Ji Chaoyi Yang +7 位作者 Xuerui Pang Yibing Yan Yue Wu Zhi Geng Wenjie Hu Panpan Hu Xingqi Wu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第2期326-342,共17页
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur... Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations. 展开更多
关键词 Alzheimer’s disease amyloid deposition apoptotic mechanisms BIOMARKER neural regeneration NEURODEGENERATION repetitive transcranial magnetic stimulation synaptic plasticity
下载PDF
Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation:a systematic review 被引量:1
3
作者 Susana A.Ferreira Nuno Pinto +2 位作者 Inês Serrenho Maria Vaz Pato Graça Baltazar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期116-123,共8页
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to t... Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field. 展开更多
关键词 ASTROCYTE GLIA high-frequency repetitive magnetic stimulation inflammation low-frequency repetitive magnetic stimulation MICROGLIA neurologic disorders OLIGODENDROCYTE repetitive magnetic stimulation theta-burst stimulation
下载PDF
Uncertainty quantification of inverse analysis for geomaterials using probabilistic programming 被引量:1
4
作者 Hongbo Zhao Shaojun Li +3 位作者 Xiaoyu Zang Xinyi Liu Lin Zhang Jiaolong Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期895-908,共14页
Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv... Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems. 展开更多
关键词 Geological engineering Geotechnical engineering Inverse analysis uncertainty quantification Probabilistic programming
下载PDF
High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke 被引量:4
5
作者 Jing Luo Yuan Feng +4 位作者 Zhongqiu Hong Mingyu Yin Haiqing Zheng Liying Zhang Xiquan Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1772-1780,共9页
Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous ... Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells. 展开更多
关键词 AKT/β-catenin signaling brain stimulation Ca2+influx cell proliferation ischemic stroke middle cerebral artery occlusion neural stem cells neurological rehabilitation repetitive transcranial magnetic stimulation
下载PDF
Hydromechanical characterization of gas transport amidst uncertainty for underground nuclear explosion detection 被引量:1
6
作者 Wenfeng Li Chelsea W.Neil +3 位作者 J William Carey Meng Meng Luke P.Frash Philip H.Stauffer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2019-2032,共14页
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ... Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff. 展开更多
关键词 Underground nuclear explosion uncertainty quantification Radionuclide transport Biot effective stress coefficient Fracture permeability Matrix permeability
下载PDF
Complexity Considerations in the Heisenberg Uncertainty Principle
7
作者 Logan Nye 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第4期1470-1513,共44页
This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to co... This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition. 展开更多
关键词 uncertainty COMPLEXITY QUANTUM MEASUREMENT INFORMATION ENTANGLEMENT
下载PDF
Review on uncertainty analysis and information fusion diagnosis of aircraft control system
8
作者 ZHOU Keyi LU Ningyun +1 位作者 JIANG Bin MENG Xianfeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1245-1263,共19页
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp... In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends. 展开更多
关键词 aircraft control system sensor networks information fusion fault diagnosis uncertainty
下载PDF
Strabismus Detection Based on Uncertainty Estimation and Knowledge Distillation
9
作者 Yibiao Rong Ziyin Yang +1 位作者 Ce Zheng Zhun Fan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期399-411,共13页
Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detectio... Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model’s performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions. 展开更多
关键词 knowledge distillation strabismus detection uncertainty estimation
下载PDF
Uncertainty-Aware Deep Learning: A Promising Tool for Trustworthy Fault Diagnosis
10
作者 Jiaxin Ren Jingcheng Wen +3 位作者 Zhibin Zhao Ruqiang Yan Xuefeng Chen Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1317-1330,共14页
Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack... Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind. 展开更多
关键词 Out-of-distribution detection traceability analysis trustworthy fault diagnosis uncertainty quantification.
下载PDF
High-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer based on probability density evolution method
11
作者 Mingming Wang Linfang Qian +3 位作者 Guangsong Chen Tong Lin Junfei Shi Shijie Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期209-221,共13页
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi... This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle. 展开更多
关键词 Truck-mounted howitzer Projectile motion uncertainty quantification Probability density evolution method
下载PDF
Uncertainty and disturbance estimator-based model predictive control for wet flue gas desulphurization system
12
作者 Shan Liu Wenqi Zhong +2 位作者 Li Sun Xi Chen Rafal Madonski 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期182-194,共13页
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis... Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error. 展开更多
关键词 Desulphurization system Disturbance rejection Model predictive control uncertainty and disturbance estimator Nonlinear system
下载PDF
Evaluation of the coefficient of lateral stress at rest of granular materials under repetitive loading conditions
13
作者 Heerym Han Hyunwook Choo Junghee Park 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1709-1721,共13页
Although the internal stress state of soils can be affected by repetitive loading,there are few studies evaluating the lateral stress(or K_(0))of soils under repetitive loading.This study investigates the changes in K... Although the internal stress state of soils can be affected by repetitive loading,there are few studies evaluating the lateral stress(or K_(0))of soils under repetitive loading.This study investigates the changes in K_(0) and directional shear wave velocity(V_(s))in samples of two granular materials with different particle shapes during repetitive loading.A modified oedometer cell equipped with bender elements and a diaphragm transducer was developed to measure the variations in the lateral stress and the shear wave velocity,under repetitive loading on the loading and unloading paths.The study produced the following results:(1)Repetitive loading on the loading path resulted in an increase in the K_(0) of test samples as a function of cyclic loading number(i),and(2)Repetitive loading on the unloading path resulted in a decrease in K_(0) according to i.The shear wave velocity ratio(i.e.V_(s)(HH)/V_(s)(VH),where the first and second letters in parentheses corresponds to the directions of wave propagation and particle motion,respectively,and V and H corresponds to the vertical and horizontal directions,respectively)according to i supports the experimental observations of this study.However,when the tested material was in lightly over-consolidated state,there was an increase in K_(0) during repetitive loading,indicating that it was the initial K_(0),rather than the loading path,which is responsible for the change in K_(0).The power model can capture the variation in the K_(0) of samples according to i.Notably,the K_(0)=1 line acts as the boundary between the increase and decrease in K_(0) under repetitive loading. 展开更多
关键词 Coefficient of lateral stress at rest repetitive loading Granular materials Shear wave velocity Stiffness anisotropy
下载PDF
Repetitive transcranial magnetic stimulation enhanced by neuronavigation in the treatment of depressive disorder and schizophrenia
14
作者 Xian-Yang Wang Yuan-Bei Zhang +2 位作者 Rong-Xue Mu Long-Biao Cui Hua-Ning Wang 《World Journal of Psychiatry》 SCIE 2024年第11期1618-1622,共5页
This editorial assesses the advancements in neuronavigation enhanced repetitive transcranial magnetic stimulation for depressive disorder and schizophrenia treatment.Conventional repetitive transcranial magnetic stimu... This editorial assesses the advancements in neuronavigation enhanced repetitive transcranial magnetic stimulation for depressive disorder and schizophrenia treatment.Conventional repetitive transcranial magnetic stimulation faces challenges due to the intricacies of brain anatomy and patient variability.Neuronavigation offers innovative solutions by integrating neuroimaging with three-dimensional localization to pinpoint brain regions and refine therapeutic targeting.This systematic review of recent literature underscores the enhanced efficacy of neuronavigation in improving treatment outcomes for these disorders.This editorial highlights the pivotal role of neuronavigation in advancing psychiatric care. 展开更多
关键词 repetitive transcranial magnetic stimulation NEURONAVIGATION Depressive disorder SCHIZOPHRENIA Psychiatric care
下载PDF
Exploring the Implications of the Deformation Parameter and Minimal Length in the Generalized Uncertainty Principle
15
作者 Mahgoub A. Salih Taysir M. Elmahdi 《Journal of Quantum Information Science》 CAS 2024年第1期1-14,共14页
The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are ... The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value. 展开更多
关键词 Generalized uncertainty Principle Deformed Heisenberg Algebra Minimal Length
下载PDF
Leveraging Uncertainty for Depth-Aware Hierarchical Text Classification
16
作者 Zixuan Wu Ye Wang +2 位作者 Lifeng Shen Feng Hu Hong Yu 《Computers, Materials & Continua》 SCIE EI 2024年第9期4111-4127,共17页
Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to th... Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to the correct parent node instead of treating leaf nodes as the final classification target.Second,error propagation occurs when a misclassification at a parent node propagates down the hierarchy,ultimately leading to inaccurate predictions at the leaf nodes.To address these limitations,we propose an uncertainty-guided HTC depth-aware model called DepthMatch.Specifically,we design an early stopping strategy with uncertainty to identify incomplete matching between text and labels,classifying them into the corresponding parent node labels.This approach allows us to dynamically determine the classification depth by leveraging evidence to quantify and accumulate uncertainty.Experimental results show that the proposed DepthMatch outperforms recent strong baselines on four commonly used public datasets:WOS(Web of Science),RCV1-V2(Reuters Corpus Volume I),AAPD(Arxiv Academic Paper Dataset),and BGC.Notably,on the BGC dataset,it improvesMicro-F1 andMacro-F1 scores by at least 1.09%and 1.74%,respectively. 展开更多
关键词 Hierarchical text classification incomplete text-label matching uncertainty depth-aware early stopping strategy
下载PDF
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system
17
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system Electromechanical coupling dynamics uncertainty quantification Generalized probability density evolution
下载PDF
Generalized nth-Order Perturbation Method Based on Loop Subdivision Surface Boundary Element Method for Three-Dimensional Broadband Structural Acoustic Uncertainty Analysis
18
作者 Ruijin Huo Qingxiang Pei +1 位作者 Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2053-2077,共25页
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill... In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples. 展开更多
关键词 Perturbation method loop subdivision surface isogeometric boundary element method uncertainty analysis
下载PDF
Using Cross Entropy as a Performance Metric for Quantifying Uncertainty in DNN Image Classifiers: An Application to Classification of Lung Cancer on CT Images
19
作者 Eri Matsuyama Masayuki Nishiki +1 位作者 Noriyuki Takahashi Haruyuki Watanabe 《Journal of Biomedical Science and Engineering》 2024年第1期1-12,共12页
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation... Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. . 展开更多
关键词 Cross Entropy Performance Metrics DNN Image Classifiers Lung Cancer Prediction uncertainty
下载PDF
Optimal Bidding Strategies of Microgrid with Demand Side Management for Economic Emission Dispatch Incorporating Uncertainty and Outage of Renewable Energy Sources
20
作者 Mousumi Basu Chitralekha Jena +1 位作者 Baseem Khan Ahmed Ali 《Energy Engineering》 EI 2024年第4期849-867,共19页
In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a sma... In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions. 展开更多
关键词 MICRO-GRID distributed energy resources demand response program uncertainty OUTAGE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部