期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of the Initial Vortex Structure on Intensity Change During Eyewall Replacement Cycle of Tropical Cyclones:A Numerical Study
1
作者 杨昕玮 王玉清 +2 位作者 王慧 徐晶 占瑞芬 《Journal of Tropical Meteorology》 SCIE 2024年第2期106-117,共12页
This study investigates the effect of the initial tropical cyclone(TC)vortex structure on the intensity change during the eyewall replacement cycle(ERC)of TCs based on two idealized simulations using the Weather Resea... This study investigates the effect of the initial tropical cyclone(TC)vortex structure on the intensity change during the eyewall replacement cycle(ERC)of TCs based on two idealized simulations using the Weather Research and Forecasting(WRF)model.Results show that an initially smaller TC with weaker outer winds experienced a much more drastic intensity change during the ERC than an initially larger TC with stronger outer winds.It is found that an initially larger TC vortex with stronger outer winds favored the development of more active spiral rainbands outside the outer eyewall,which slowed down the contraction and intensification of the outer eyewall and thus prolonged the duration of the concentric eyewall and slow intensity evolution.In contrast,the initially smaller TC with weaker outer winds corresponded to higher inertial stability in the inner core and weaker inertial stability but stronger filamentation outside the outer eyewall.These led to stronger boundary layer inflow,stronger updraft and convection in the outer eyewall,and suppressed convective activity outside the outer eyewall.These resulted in the rapid weakening during the formation of the outer eyewall,followed by a rapid re-intensification of the TC during the ERC.Our study demonstrates that accurate initialization of the TC structure in numerical models is crucial for predicting changes in TC intensity during the ERC.Additionally,monitoring the activity of spiral rainbands outside the outer eyewall can help to improve short-term intensity forecasts for TCs experiencing ERCs. 展开更多
关键词 tropical cyclones concentric eyewall inner eyewall and outer eyewall eyewall replacement cycle intensity change
下载PDF
Simulated Sensitivity of the Tropical Cyclone Eyewall Replacement Cycle to the Ambient Temperature Profile
2
作者 Xulin MA Jie HE Xuyang GE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第9期1047-1056,共10页
In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal cond... In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal condition can greatly affect the formation and structure of a secondary eyewall and the intensity change during the eyewall replacement cycle. Simulation with a warmer thermal profile produces a larger moat and a prolonged eyewall replacement cycle. It is revealed that the enhanced static stability greatly suppresses convection, and thus causes slow secondary eyewall formation. The possible processes influencing the decay of inner eyewall convection are investigated. It is revealed that the demise of the inner eyewall is related to a choking effect associated with outer eyewall convection, the radial distribution of moist entropy fluxes within the moat region, the enhanced static stability in the inner-core region, and the interaction between the inner and outer eyewalls due to the barotropic instability. This study motivates further research into how environmental conditions influence tropical cyclone dynamics and thermodynamics. 展开更多
关键词 tropical cyclone eyewall replacement cycle ambient temperature profile
下载PDF
Influences of Different PBL Schemes on Secondary Eyewall Formation and Eyewall Replacement Cycle in Simulated Typhoon Sinlaku (2008) 被引量:1
3
作者 张玉涛 蒋星鑫 谭本馗 《Acta meteorologica Sinica》 SCIE 2013年第3期322-334,共13页
The effects of different planetary boundary layer (PBL) processes on the secondary eyewall formation (SEF) and eyewall replacement cycle (ERC) in Typhoon Sinlaku (2008) are investigated by using the Weather Re... The effects of different planetary boundary layer (PBL) processes on the secondary eyewall formation (SEF) and eyewall replacement cycle (ERC) in Typhoon Sinlaku (2008) are investigated by using the Weather Research and Forecasting (WRF) model with six different PBL schemes. The SEF and ERC have been successfully simulated with all the six PBL schemes and the mechanism for the SEF and ERC proposed in our previous study has been reconfirmed. It is demonstrated that both the intensification of the storm and the inward-moving outer spiral rainband contribute to the SEF. After the SEF, the associated diabatic heating enhances the secondary eyewall further, and the transfer of moist air from outer region to the primary eyewall is cut off by the secondary eyewall. In such a way, the primary eyewall dies and an ERC completes. It is found that some simulated features of the SEF and ERC, such as the time and location of the SEF and duration of the ERC, do vary from one simulation to another. In order to describe the features of the SEF and ERC quantitatively, a concentric eyewall index (CEI) is defined and a threshold of the CEI is suggested to determine the onset of the secondary eyewall. The differences in the simulated SEF and ERC are discussed and some possible causes are suggested. In addition, based on the CEI threshold and the conservation law of angular momentum, a formula to predict the location of SEF is also proposed and applied to all the six simulations. The success and failure of the formula are then discussed. 展开更多
关键词 eyewall replacement cycle secondary eyewall formation PBL scheme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部