Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes...Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes. Previous studies have focused heavily on the relationship between substrate nutrients and water conditions and the development of mosses on the rock surface, but quantitative characterization of substantial effect of rock surface texture(e.g., microrelief) on moss growth is absent. The undulating microrelief on the rock surface can increase the heterogeneity of the microhabitat, which may be an important factor affecting the development of mossdominated biocrusts. In this study, the roughness of rock surfaces, moss coverage and biomass, weight and major nutrient contents of soils within the biocrusts were measured in the western mountainous area of Sichuan Province, Southwest China to further examine the role of rock surface microrelief in the biocrusts. The results showed that three main factors affecting the development of the biocrusts were bryophyte emergence, soil accumulation, and lithology. The presence of moss accelerates soil formation on rock surfaces and lead to the accumulation of nutrients so that all parts of the moss-dominated biocrusts system can develop synergistically. It was found that a microrelief structure with a roughness between 1.5 and 2.5 could gather soil and bryophyte propagules effectively, which may have a strong relationship with the angle of repose. When the roughness is 1.5, the corresponding undulation angle is very close to the theoretical minimum value of the undulation angle calculated according to the relationships between the undulation angle of the protrusion, slope and angle of repose.展开更多
The flowability of five kinds of microencapsulation powders,with differentβ-carotene contents and by two alternative particle-forming technologies i.e.spray-drying and starch-catching beadlet technology,was meas- ure...The flowability of five kinds of microencapsulation powders,with differentβ-carotene contents and by two alternative particle-forming technologies i.e.spray-drying and starch-catching beadlet technology,was meas- ured.The actual flow properties of the five powders were compared based on bin-flow test,and three flow indexes (Hausner ratio,repose angle and flow index)were measured.It was found that the repose angle is the most suitable index to reflect the flowability of these powders for the particle properties would not be altered due to compaction or tapping during the measuring process.Particle size and particle size distribution play most important roles in the flowability of these granular materials,which was also influenced by other factors like shape,surface texture,sur- face roughness,etc.Microcapsules with wall material of gelatin and a layer of modified starch absorbed on the sur- face showed excellent flowabilities and good mechanical properties,and they are favorable for tabletting to supply β-carotene.展开更多
Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and a...Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.展开更多
Sunflower(Helianthus annuus L.)is one of the four major oil crops in the world and has high economic value.However,the lack of discrete element method(DEM)models and parameters for sunflower seeds hinders the applicat...Sunflower(Helianthus annuus L.)is one of the four major oil crops in the world and has high economic value.However,the lack of discrete element method(DEM)models and parameters for sunflower seeds hinders the application of DEM for computer simulation in the key working processes of sunflower seed sowing and harvesting.The present study was conducted on two varieties of sunflower,and the DEM model of sunflower seeds was established by using 3D scanning technology based on the distribution of triaxial dimensions and volumes of the geometric model of sunflower seeds.Similarly,the physical characteristics parameters of sunflower seeds were determined by physical tests and the simulation parameters were screened for significance based on the Plackett-Burman test.Our results show that the coefficient of static friction between sunflower seeds and the coefficient of rolling friction have significant effects on the repose angle of the simulation test.Furthermore,the optimal range of the significance parameters was further determined by the steepest climb test,and the second-order regression model of the significance parameters and the repose angle was obtained according to the Box-Behnken design test and Response Surface Methodology(RSM),with the repose angle measured by the physical test as the optimized target value to obtain the optimal parameter combination.Finally,a two-sample t-test for the repose angle of the physical test and the repose angle of the simulation test yielded P>0.05.Our results confirms that the repose angle obtained from simulation is not significantly different from the physical test value,and the relative errors between the repose angle of the simulation test and the physical test are 1.43%and 0.40%,respectively,for the optimal combination of parameters.Based on these results it can be concluded that the optimal parameters obtained from the calibration can be used for DEM simulation experiments related to the sunflower seed sowing and harvesting process.展开更多
The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can...The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can rest without motion. In this paper, we use existing data and aeolian physics to analyze the main factors that influence the repose angle of sand dunes, and we investigate different repose angles involving various states and types of materials. We have determined that different factors have differential influence on the magnitude of the repose angle. Our results show that for powdery (〈400-μm diameter) desert sands, the main influential factor on the magnitude of repose angle is the molecular force among particles. Particle size does not influence the repose angle of desert sands directly, but has an indirect impact by affecting the grit sphericity and surface roughness, of which the grit sphericity acts as a major factor. Even at the same average particle size, the repose angle differs with different grain compositions. Furthermore, with increasing unevenness in grain composition, the repose angle increases correspondingly. Sand texture also has a direct influence on the repose angle of desert sands. In two sand samples having the same grain composition but different textures, the repose angles may be different. Water content has a stronger influence on the repose angle than any other factor. However, the relationship between the repose angle and water content is not a simple direct proportion. In fact, with increasing water content, the repose angle first increases and then decreases. These research results will be useful for understanding the mechanisms of dune transport, variations of dune morphology, and the stability and fluidity of dune sands.展开更多
[Objectives]To optimize the drying technology and formation process of Naomai Xingshen Capsules.[Methods]The yield of paste powder and moisture content as evaluation indicators were taken as indicators,the relative de...[Objectives]To optimize the drying technology and formation process of Naomai Xingshen Capsules.[Methods]The yield of paste powder and moisture content as evaluation indicators were taken as indicators,the relative density of feed liquid,inlet air temperature and dosage of excipients were selected as investigation factors,the orthogonal experiment method was used to optimize the spray drying process.The moisture absorption rate and angle of repose were taken as evaluation indicators,the types of forming excipient were screened,and the critical relative humidity was determined.[Results]The optimum spray drying process was that the relative density of liquid medicine was 1.05(60℃),the air inlet temperature was 200℃,and the dosage of excipients was 2%.The effect of using dextrin as a forming excipient was better,and the relative humidity of the production environment should be controlled below 65%.[Conclusions]The optimized process is stable,feasible,scientific and reasonable,and can be used for large-scale industrial production.展开更多
In this study,the discrete element software EDEM was applied to establish a simulation model of non-uniform-sized particle units for Broussonetia papyrifera stalks,which aimed to address the low utilization rate of ex...In this study,the discrete element software EDEM was applied to establish a simulation model of non-uniform-sized particle units for Broussonetia papyrifera stalks,which aimed to address the low utilization rate of existing Broussonetia papyrifera harvesting machinery,the significant variation between the simulated model of Broussonetia papyrifera stalks and their actual appearance,as well as the absence of contact parameter calibration.Through a combination of the free-fall collision method,inclined plane sliding method,and inclined plane rolling method,numerical simulation was conducted to analyze the pattern of variations in contact parameters between Broussonetia papyrifera stalks and the steel material of the machinery.Accordingly,these parameters were calibrated.The results showed that the coefficient of restitution between Broussonetia papyrifera stalks and steel materials was 0.321,the static friction factor was 0.589,and the rolling friction factor was 0.078.With the parameters of contact between Broussonetia papyrifera stalks as variables and the experimentally measured pile angle as the objective of optimization,the steepest ascent experiment and the three-factor five-level rotation combination experiment were conducted.In this way,a second-order response model was constructed to analyze the relationship between the contact parameters and the pile angle.Through the optimization analysis of experimental data,it was determined that the coefficient of restitution between Broussonetia papyrifera stalks was 0.21,the static friction factor was 0.24,and the rolling friction factor was 0.03.Furthermore,the calibration results were validated through experimentation to show that the relative error between the obtained pile angle under the context of optimal parameter combination and the actual one was 4.11%.In addition,the relative error of mass flow rate in spiral transport was within a reasonable range,this study lays a foundation both theoretically and statistically for the simulation of contact parameters for Broussonetia papyrifera stalk harvesting processing,mechanical harvesting,and so on.展开更多
This study constructed a numerical model using the discrete element software EDEM to address the current lack of calibrated contact parameters for peanut seedling membranes and the absence of precise simulation model ...This study constructed a numerical model using the discrete element software EDEM to address the current lack of calibrated contact parameters for peanut seedling membranes and the absence of precise simulation model parameters for mechanized separation. The Hysteretic Spring Contact Model (HSCM) was employed to calibrate the contact parameters of peanut seedling membranes. The angle of repose of peanut seedling membranes was determined through image processing combined with the least squares method. Through central composite design (CCD), a second-order response model linking the contact parameters to the angle of repose was established. Optimization was achieved by using the angle of repose obtained from physical tests as the objective. Secondary simulation tests were conducted with the calibrated parameters, revealing a relative error of 1.37% between the simulated and physical angles of repose. This confirmed the effectiveness of the parameters in calibrating peanut seedling membrane characteristics. The findings offer theoretical and empirical support for discrete element simulations of peanut seedling membrane separation and peanut straw pulverization processes.展开更多
To improve the survival rate of larvae during material separation after biotransformation of existing residual film mixtures of Protaetia brevitarsis larvae,this paper adopts the method of combining physical test and ...To improve the survival rate of larvae during material separation after biotransformation of existing residual film mixtures of Protaetia brevitarsis larvae,this paper adopts the method of combining physical test and EDEM simulation test,and selects Hertz Mindlin with JKR contact model to calibrate the discrete element simulation contact parameters of the Protaetia brevitarsis larvae and the frass mixture.First,the cylinder lifting method was used to determine the actual repose angle of the mixture of larvae and frass.The collision recovery coefficients between larvae-frass and steel,static friction coefficient,kinetic friction coefficient and the collision recovery coefficient between larvae were measured through physical tests such as the inclined plane method.The Plackett-Burman test was then used to screen out the factors that have a significant impact on the repose angle:Poisson’s ratio of frass,frass-frass rolling friction coefficient,frass JKR surface energy,frass-larvae JKR surface energy.The optimal value intervals of four significant factors were determined based on the steepest climb test,Based on the Box-Behnken response surface analysis test,the second-order regression model between the repose angle and four significant factors was determined,and variance and interaction effects were analyzed.And with the actual repose angle as the goal,the significant factors were optimized and the optimal parameter combination of the four significant factors was determined.The simulation test of material repose angle and screening was carried out with the optimal parameter combination,and compared with the physical test.It was found that the maximum relative errors of the two tests were 1.48%and 3.79%respectively,indicating that the calibrated parameter values are true and reliable,It can provide a reference for the discrete element simulation of the transportation and separation of the Protaetia brevitarsis larvae-frass mixture.展开更多
Discrete element modelling(DEM)is a numerical method for examining the dynamic behavior of granular media.In order to build an accurate simulation model and provide more comprehensive soil characteristic parameters fo...Discrete element modelling(DEM)is a numerical method for examining the dynamic behavior of granular media.In order to build an accurate simulation model and provide more comprehensive soil characteristic parameters for the design and optimization of various soil contact machinery,in this paper,the discrete element simulation method(EDEM)combined with experimental approach is used to investigate the soil contact characteristic parameters in East Asia.In this study,Hertze-Mindlin(no slip)was used as a particle contact model by taking particle contact parameters and soil JKR(Johnson-Kendall-Roberts)surface energy as determinants,and repose angle,internal friction angle,and cohesive force as evaluation indexes.The method of Plackett-Burman,Stepest ascent,and Box-Behnken were used to gradually reduce the range of parameters needed for simulation until the most accurate value was determined.The results show that the restitution coefficient,static friction coefficient,and rolling friction coefficient between soil particles have significant effects on the DEM model,and their value of them are 0.596,0.725,and 0.16,respectively.Based on these parameters used for the repose angle test and direct shear stress test,the value of repose angle is 31.97°,the internal friction angle is 27.61°,and the cohesive force is 33.06 kPa.The relative errors with the actual measured values are 9.54%,1.87%,and 2.31%,respectively.In order to further test whether the simulation parameters of soil obtained by repose angle test and direct shear stress test are consistent with the real soil,comparison test between field test and discrete element simulation was used.The results show that the error in height of ridge between the simulated soil and the actual soil is 4.06%,which is within the acceptable range.It also indicates that the calibrated and optimized soil simulation model can accurately represent the real soil.The research provides theoretical basis and technical support for the study of soil contact parts by using the discrete element method,combined with repose angle test and direct shear stress test.展开更多
基金supported by the Project of Assessment on Post-quake Ecosystem and Environment Recovery in Jiuzhaigou under Grant 5132202020000046the National Key Research and Development Programme of China under Grant 2017YFC0504902。
文摘Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes. Previous studies have focused heavily on the relationship between substrate nutrients and water conditions and the development of mosses on the rock surface, but quantitative characterization of substantial effect of rock surface texture(e.g., microrelief) on moss growth is absent. The undulating microrelief on the rock surface can increase the heterogeneity of the microhabitat, which may be an important factor affecting the development of mossdominated biocrusts. In this study, the roughness of rock surfaces, moss coverage and biomass, weight and major nutrient contents of soils within the biocrusts were measured in the western mountainous area of Sichuan Province, Southwest China to further examine the role of rock surface microrelief in the biocrusts. The results showed that three main factors affecting the development of the biocrusts were bryophyte emergence, soil accumulation, and lithology. The presence of moss accelerates soil formation on rock surfaces and lead to the accumulation of nutrients so that all parts of the moss-dominated biocrusts system can develop synergistically. It was found that a microrelief structure with a roughness between 1.5 and 2.5 could gather soil and bryophyte propagules effectively, which may have a strong relationship with the angle of repose. When the roughness is 1.5, the corresponding undulation angle is very close to the theoretical minimum value of the undulation angle calculated according to the relationships between the undulation angle of the protrusion, slope and angle of repose.
基金Supported by the National-Natural Science Foundation of China (No.20576118) and National High Technology Research and Development Program of China (863 Program, No.2006AA02Z210).
文摘The flowability of five kinds of microencapsulation powders,with differentβ-carotene contents and by two alternative particle-forming technologies i.e.spray-drying and starch-catching beadlet technology,was meas- ured.The actual flow properties of the five powders were compared based on bin-flow test,and three flow indexes (Hausner ratio,repose angle and flow index)were measured.It was found that the repose angle is the most suitable index to reflect the flowability of these powders for the particle properties would not be altered due to compaction or tapping during the measuring process.Particle size and particle size distribution play most important roles in the flowability of these granular materials,which was also influenced by other factors like shape,surface texture,sur- face roughness,etc.Microcapsules with wall material of gelatin and a layer of modified starch absorbed on the sur- face showed excellent flowabilities and good mechanical properties,and they are favorable for tabletting to supply β-carotene.
基金supported by 973 Program (2008CB425803)the National Natural Science Foundation of China (Grant No. 50979064)
文摘Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.
基金funding for this study from Nature Science Foundation of China,Grant No.(51865047).
文摘Sunflower(Helianthus annuus L.)is one of the four major oil crops in the world and has high economic value.However,the lack of discrete element method(DEM)models and parameters for sunflower seeds hinders the application of DEM for computer simulation in the key working processes of sunflower seed sowing and harvesting.The present study was conducted on two varieties of sunflower,and the DEM model of sunflower seeds was established by using 3D scanning technology based on the distribution of triaxial dimensions and volumes of the geometric model of sunflower seeds.Similarly,the physical characteristics parameters of sunflower seeds were determined by physical tests and the simulation parameters were screened for significance based on the Plackett-Burman test.Our results show that the coefficient of static friction between sunflower seeds and the coefficient of rolling friction have significant effects on the repose angle of the simulation test.Furthermore,the optimal range of the significance parameters was further determined by the steepest climb test,and the second-order regression model of the significance parameters and the repose angle was obtained according to the Box-Behnken design test and Response Surface Methodology(RSM),with the repose angle measured by the physical test as the optimized target value to obtain the optimal parameter combination.Finally,a two-sample t-test for the repose angle of the physical test and the repose angle of the simulation test yielded P>0.05.Our results confirms that the repose angle obtained from simulation is not significantly different from the physical test value,and the relative errors between the repose angle of the simulation test and the physical test are 1.43%and 0.40%,respectively,for the optimal combination of parameters.Based on these results it can be concluded that the optimal parameters obtained from the calibration can be used for DEM simulation experiments related to the sunflower seed sowing and harvesting process.
基金supported by the National Natural Science Foundation of China (Grant No. 50879033)the National Science Fund for Fostering Talents in Basic Research of the National Natural Science Foundation of China (Grant No.J0730536)
文摘The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can rest without motion. In this paper, we use existing data and aeolian physics to analyze the main factors that influence the repose angle of sand dunes, and we investigate different repose angles involving various states and types of materials. We have determined that different factors have differential influence on the magnitude of the repose angle. Our results show that for powdery (〈400-μm diameter) desert sands, the main influential factor on the magnitude of repose angle is the molecular force among particles. Particle size does not influence the repose angle of desert sands directly, but has an indirect impact by affecting the grit sphericity and surface roughness, of which the grit sphericity acts as a major factor. Even at the same average particle size, the repose angle differs with different grain compositions. Furthermore, with increasing unevenness in grain composition, the repose angle increases correspondingly. Sand texture also has a direct influence on the repose angle of desert sands. In two sand samples having the same grain composition but different textures, the repose angles may be different. Water content has a stronger influence on the repose angle than any other factor. However, the relationship between the repose angle and water content is not a simple direct proportion. In fact, with increasing water content, the repose angle first increases and then decreases. These research results will be useful for understanding the mechanisms of dune transport, variations of dune morphology, and the stability and fluidity of dune sands.
基金Medical Research Project of Zhongshan City Health and Family Planning Bureau,Guangdong Province(2015J050).
文摘[Objectives]To optimize the drying technology and formation process of Naomai Xingshen Capsules.[Methods]The yield of paste powder and moisture content as evaluation indicators were taken as indicators,the relative density of feed liquid,inlet air temperature and dosage of excipients were selected as investigation factors,the orthogonal experiment method was used to optimize the spray drying process.The moisture absorption rate and angle of repose were taken as evaluation indicators,the types of forming excipient were screened,and the critical relative humidity was determined.[Results]The optimum spray drying process was that the relative density of liquid medicine was 1.05(60℃),the air inlet temperature was 200℃,and the dosage of excipients was 2%.The effect of using dextrin as a forming excipient was better,and the relative humidity of the production environment should be controlled below 65%.[Conclusions]The optimized process is stable,feasible,scientific and reasonable,and can be used for large-scale industrial production.
基金the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30310)Scientific Research Fund of Hunan Provincial Education Department(Grant No.22A0169).
文摘In this study,the discrete element software EDEM was applied to establish a simulation model of non-uniform-sized particle units for Broussonetia papyrifera stalks,which aimed to address the low utilization rate of existing Broussonetia papyrifera harvesting machinery,the significant variation between the simulated model of Broussonetia papyrifera stalks and their actual appearance,as well as the absence of contact parameter calibration.Through a combination of the free-fall collision method,inclined plane sliding method,and inclined plane rolling method,numerical simulation was conducted to analyze the pattern of variations in contact parameters between Broussonetia papyrifera stalks and the steel material of the machinery.Accordingly,these parameters were calibrated.The results showed that the coefficient of restitution between Broussonetia papyrifera stalks and steel materials was 0.321,the static friction factor was 0.589,and the rolling friction factor was 0.078.With the parameters of contact between Broussonetia papyrifera stalks as variables and the experimentally measured pile angle as the objective of optimization,the steepest ascent experiment and the three-factor five-level rotation combination experiment were conducted.In this way,a second-order response model was constructed to analyze the relationship between the contact parameters and the pile angle.Through the optimization analysis of experimental data,it was determined that the coefficient of restitution between Broussonetia papyrifera stalks was 0.21,the static friction factor was 0.24,and the rolling friction factor was 0.03.Furthermore,the calibration results were validated through experimentation to show that the relative error between the obtained pile angle under the context of optimal parameter combination and the actual one was 4.11%.In addition,the relative error of mass flow rate in spiral transport was within a reasonable range,this study lays a foundation both theoretically and statistically for the simulation of contact parameters for Broussonetia papyrifera stalk harvesting processing,mechanical harvesting,and so on.
基金supported by the National Natural Science Foundation of China(Grant No.52175238)the Xinjiang Key Research and Development Program(Grant No.2022B02022-1)+1 种基金the Engineering Research and Development of High-efficiency Intelligent Residue Film Recycling Equipment in 2022(Second Batch)(Grant No.CEIEC-2022-ZM02-0226)the Integrated Pilot Project for Research,Development,Manufacturing,and Promotion of Agricultural Machinery in Shandong Province(Grant No.NJYTHSD-202321).
文摘This study constructed a numerical model using the discrete element software EDEM to address the current lack of calibrated contact parameters for peanut seedling membranes and the absence of precise simulation model parameters for mechanized separation. The Hysteretic Spring Contact Model (HSCM) was employed to calibrate the contact parameters of peanut seedling membranes. The angle of repose of peanut seedling membranes was determined through image processing combined with the least squares method. Through central composite design (CCD), a second-order response model linking the contact parameters to the angle of repose was established. Optimization was achieved by using the angle of repose obtained from physical tests as the objective. Secondary simulation tests were conducted with the calibrated parameters, revealing a relative error of 1.37% between the simulated and physical angles of repose. This confirmed the effectiveness of the parameters in calibrating peanut seedling membrane characteristics. The findings offer theoretical and empirical support for discrete element simulations of peanut seedling membrane separation and peanut straw pulverization processes.
基金supported by the Autonomous Region Key R&D Program of Xinjiang,China(Grant No.2022B02046).
文摘To improve the survival rate of larvae during material separation after biotransformation of existing residual film mixtures of Protaetia brevitarsis larvae,this paper adopts the method of combining physical test and EDEM simulation test,and selects Hertz Mindlin with JKR contact model to calibrate the discrete element simulation contact parameters of the Protaetia brevitarsis larvae and the frass mixture.First,the cylinder lifting method was used to determine the actual repose angle of the mixture of larvae and frass.The collision recovery coefficients between larvae-frass and steel,static friction coefficient,kinetic friction coefficient and the collision recovery coefficient between larvae were measured through physical tests such as the inclined plane method.The Plackett-Burman test was then used to screen out the factors that have a significant impact on the repose angle:Poisson’s ratio of frass,frass-frass rolling friction coefficient,frass JKR surface energy,frass-larvae JKR surface energy.The optimal value intervals of four significant factors were determined based on the steepest climb test,Based on the Box-Behnken response surface analysis test,the second-order regression model between the repose angle and four significant factors was determined,and variance and interaction effects were analyzed.And with the actual repose angle as the goal,the significant factors were optimized and the optimal parameter combination of the four significant factors was determined.The simulation test of material repose angle and screening was carried out with the optimal parameter combination,and compared with the physical test.It was found that the maximum relative errors of the two tests were 1.48%and 3.79%respectively,indicating that the calibrated parameter values are true and reliable,It can provide a reference for the discrete element simulation of the transportation and separation of the Protaetia brevitarsis larvae-frass mixture.
基金This work was financially supported by the National Science and Technology Major Project of China(Grant No.2019YFD 1002502)the National Natural Science Foundation of China(Grant No.51675239)+2 种基金The Natural Science Fund Project of Colleges in Jiangsu Province of China(Grant No.19KJA430018)The Important Development Program of Ningxia Province of China(Grant No.2018BBF02020)The Research and Development Program of Zhenjiang Province of China(Grant No.NY2019015).
文摘Discrete element modelling(DEM)is a numerical method for examining the dynamic behavior of granular media.In order to build an accurate simulation model and provide more comprehensive soil characteristic parameters for the design and optimization of various soil contact machinery,in this paper,the discrete element simulation method(EDEM)combined with experimental approach is used to investigate the soil contact characteristic parameters in East Asia.In this study,Hertze-Mindlin(no slip)was used as a particle contact model by taking particle contact parameters and soil JKR(Johnson-Kendall-Roberts)surface energy as determinants,and repose angle,internal friction angle,and cohesive force as evaluation indexes.The method of Plackett-Burman,Stepest ascent,and Box-Behnken were used to gradually reduce the range of parameters needed for simulation until the most accurate value was determined.The results show that the restitution coefficient,static friction coefficient,and rolling friction coefficient between soil particles have significant effects on the DEM model,and their value of them are 0.596,0.725,and 0.16,respectively.Based on these parameters used for the repose angle test and direct shear stress test,the value of repose angle is 31.97°,the internal friction angle is 27.61°,and the cohesive force is 33.06 kPa.The relative errors with the actual measured values are 9.54%,1.87%,and 2.31%,respectively.In order to further test whether the simulation parameters of soil obtained by repose angle test and direct shear stress test are consistent with the real soil,comparison test between field test and discrete element simulation was used.The results show that the error in height of ridge between the simulated soil and the actual soil is 4.06%,which is within the acceptable range.It also indicates that the calibrated and optimized soil simulation model can accurately represent the real soil.The research provides theoretical basis and technical support for the study of soil contact parts by using the discrete element method,combined with repose angle test and direct shear stress test.