We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells acro...We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots. It is noted that groundwater depth, soil moisture and plant species diversity are closely related. It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River. We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas. Based on different vegetation types and acreage with different groundwater depth, the total ecological water demand (EWD) of natural vegetation in 2005 was 2.4×10^8 m^3 in the lower reaches of the Tarim River. Analyzing the monthly EWD, we found that the EWD in the growth season (from April to September) is 81% of the year's total EWD. The EWD in May, June and July was 47% of the year's total EWD, which indicates the best time for dispensing artificial water. This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin.展开更多
Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of...Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of Tadm River by transferring water from Bosten Lake, through the river channel, to the lower reaches. This study describes the changes in groundwater depth during the water transfer and the respondence of riparian vegetation to alterations in groundwater levels. The results indicate that groundwater depth along the Tarim River channel has a significant spatial-temporal component. Groundwater levels closest to the river channel show the most immediate and pronounced changes as a response to water transfer while those further away respond more slowly, although the observed change appears to be longer in duration. With a rise in the groundwater level, natural vegetation responded with higher growth rates, biomass and biodiversity. These favorable changes show that it is feasible to protect and restore the degraded natural vegetation by raising the groundwater depth. Plant communities are likely to reflect the hysteresis phenomenon, requiting higher water levels to initiate and stimulate desired growth than what may be needed to maintain the plant community. Because different species have different ecologies, including different root depths and densities and water needs, their response to increasing water availability will be spatially and temporally heterogenous. The response of vegetation is also influenced by microtopography and watering style. This paper discusses strategies for the protection and restoration of the degraded vegetation in the lower reaches of the Tarim River and provides information to complement ongoing theoretical research into ecological restoration in add or semi-arid ecosystems.展开更多
To accurately evaluate ecological risks trigged by groundwater exploitation,it must be clarified the relationship between vegetation and groundwater.Based on remote sensing data sets MOD13Q1,groundwater table depth(WT...To accurately evaluate ecological risks trigged by groundwater exploitation,it must be clarified the relationship between vegetation and groundwater.Based on remote sensing data sets MOD13Q1,groundwater table depth(WTD)and total dissolved solids(TDS),the relationship between groundwater and natural vegetation was analyzed statistically in the main plain areas of Qaidam Basin.The results indicate that natural vegetation is groundwater-dependent in areas where WTD is less than 5.5 m and TDS is less than 7.5 g/L.Aquatic vegetation,hygrophytic vegetation and hygrophytic saline-alkali tolerant vegetation are mainly distributed in areas with WTD<1.1 m.Salt-tolerant and mesophytic vegetation mainly occur in areas with WTD of 1.4-3.5 m,while the xerophytic vegetation isprimarily present in areas where WTD ranges from 1.4 m to 5.5 m.Natural vegetation does not necessarily depend on groundwater in areas with WTD>5.5 m.For natural vegetation,the most suitable water TDS is less than 1.5 g/L,the moderately suitable TDS is 1.5-5.0 g/L,the basically suitable TDS is 5.0-7.5 g/L,and the unsuitable TDS is more than 7.5 g/L.展开更多
The research aimed to analyze the linkage between natural vegetation, water dynamics and pyrite (FeS2) oxidation in tidal lowlands. The research was carried out in tidal lowland Pulau Rimau, South Sumatra from Febru...The research aimed to analyze the linkage between natural vegetation, water dynamics and pyrite (FeS2) oxidation in tidal lowlands. The research was carried out in tidal lowland Pulau Rimau, South Sumatra from February to December 2010. The field observations are done by exploring several transect on land units. The field description refers to Soil Survey Staff. Water and soil samples were taken from selected key areas for laboratory analyses. The vegetation data were collected by making sample plots placed on each vegetation type with plot sizes 10 m × 10 m for secondary forests and 5 m × 5 m for shrubs and grass. The observations of surface water level were done during the river receding with units of meter above sea level (m.asl). The results shows that pyrite formation is largely determined by the availability of natural vegetation as S (sulfur) donors, climate and uncontrolled water balance and supporting faunas such as crabs and mud shrimp. Climate and water balance as well as supporting faunas is the main supporting factors to accelerate the process of formation pyrite. Oxidized pyrite increases soil pH thus toxic to fish, arable soils, plant growth, disturbing the water quality and soil nutrient availability. Oxidized pyrite is predominantly accelerated by the dynamics of river water and disturbed natural vegetation by human activities, and the pyrite oxidation management approach is divided into three main components of technologies, namely water management, land management and commodity management.展开更多
Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cul...Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cultural values and should be conserved in order to realize all these benefits. Kenya’s forests are rapidly declining due to pressure from increased population, technological innovation, urbanization human development and other land uses. Mau forest is one of the major forests in Kenya that is a catchment area for many Great Rift Valley lakes within the country and faces a lot of destruction. Continued destruction of the Mau forest will cause catastrophic environmental damage, resulting in massive food crises and compromising the livelihoods of millions of Kenyans, and the possible collapse of the tourism industry. The purpose of this research was to investigate the relationship between the increasing rate of deforestation and the reduction of the volumes of water in the neighboring lakes between the years 1989 to 2010. Satellite images from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) were used for the detection of changes in the Mau forest and the dynamics of the neighboring water bodies that included lakes: Naivasha, Baringo, Nakuru, Elementaita and Bogoria. The research showed that from a period of 1989 to 2010 Mau forest has been decreasing due to deforestation and the water bodies have irregular dynamics in that, from 1989 to 2000, there was rise in the volume of water, this is attributed to the El Nino rains experienced in the country during the year 1997 and 1998. But between 2000 and 2010 the volume decreased as the forest is also decreasing. It is recommended that the government creates awareness to sensitize the public on the importance of such forests as catchment areas in Kenya.展开更多
Drought has become a problem that is universally faced by global terrestrial ecosystems. Northeast China is located in a region sensitive to global climate changes, and one of the main impacts of climate changes in No...Drought has become a problem that is universally faced by global terrestrial ecosystems. Northeast China is located in a region sensitive to global climate changes, and one of the main impacts of climate changes in Northeast China is manifested as drought in growing seasons. This study analyzes the spatio-temporal evolution law of the water use efficiency(WUE) of the main natural vegetation(i.e., cold-temperate coniferous forests, temperate pine-broad-leaved mixed forests, warm-temperate deciduous broad-leaved forests, and grasslands) in Northeast China based on public MODIS data products, including MCD12 Q1, MOD15 A2 H, MOD16 A2, and MOD17 A3 H, and meteorological data from 2002 to 2013. The influence of drought events on the WUE of different vegetation types and their response to drought events are also investigated. The study findings are as follows:(1) drought in Northeast China frequently occurs in the regions stretching from 114.55°E to 120.90°E, and the percentage of drought area among the forests is lower than that among the grasslands during these years;(2) the annual average WUE of the natural vegetation ranges from 0.82 to 1.08 C/kg^(-1) H_2O, and the WUE of forests(0.82 to 1.08 C/kg^(-1) H_2O) is universally higher than that of grasslands(0.84 to 0.99 C/kg^(-1) H_2O);(3) in 2008, the regions where the WUE in drought conditions is higher than that in normal water conditions account for 86.11% of the study area, and a significant linear positive correlation is found between the WUE in drought conditions and the WUE in normal water conditions, whereas the degree of drought does not influence the WUE of the natural vegetation in an obviously linear manner; and(4) the WUE for the cold-temperate coniferous forests and temperate pine-broad-leaved mixed forests with a high ET or low NPP is more likely to rise in drought conditions; the WUE for the grasslands with a low Evapotranspiration(ET), Net Primary Production(NPP), and Leaf Area Index(LAI) is more likely to rise in drought conditions; and the ET, NPP, and LAI have no significant influence on the WUE for the warm-temperate deciduous broad-leaved forests in drought conditions. This study contributes to improving the evaluation of the influence of drought on natural ecosystems.展开更多
This paper analyzes the monitored data of the 4 times of stream water conveyances to the river section where the stream flow was cut-off, of 9 groundwater-monitoring sections and 18 vegetation plots in the lower reach...This paper analyzes the monitored data of the 4 times of stream water conveyances to the river section where the stream flow was cut-off, of 9 groundwater-monitoring sections and 18 vegetation plots in the lower reaches of Tarim River. The results show that the groundwater depth in the lower reaches of Tarim River rose from 9.87 m before the conveyances to 7.74 m and 3.79 m after the first and second conveyances, 3.61 and 3.16 m after the 2 phases of the third conveyance, and 2.66 m after the fourth conveyance. The transverse response scope of groundwater level was gradually enlarged along both sides of the channel of conveyances, i.e., from 450 m in width after the first conveyance to 1050 m after the fourth conveyance, but the response degree of groundwater level was reduced with the increase of the distance away from the channel of conveyances. The composition, distribution and growth status of the natural vegetation are directly related to the groundwater depth. The indexes of Simpson’s biodiversity, McIntosh’s evenness and Margalef’s richness, which reflect the change of the quantity of species and the degree of biodiversity, are reduced from 0.70, 0.48 and 0.90 to 0.26, 0.17 and 0.37 re- spectively along with the drawdown of groundwater level from the upper reaches to the lower reaches. After the stream water conveyances, the natural vegetation in the lower reaches is saved and restored along with the rise of groundwater level, the response scope of vegetation is gradually enlarged, i.e., from 200— 250 m in width after the first conveyance to 800 m after the fourth conveyance. However, there is still a great disparity to the objective of protecting the “Green Corridor”in the lower reaches of Tarim River. Thus, it is suggested to convey the stream water in double-channel way, combine the conveyance with water supply in surface scope, or construct the modern pipe-conveyance network systems so as to save the natural vegetation in an intensive way, achieve the efficient water consumption and speed up the restoration and re- generation of the damaged ecosystems in the lower reaches of Tarim River.展开更多
According to the characteristics of water and erosion environments of different natural zones on the Loess Plateau, this paper studies changes of vegetation types, distribution boundaries of forest and grass as well a...According to the characteristics of water and erosion environments of different natural zones on the Loess Plateau, this paper studies changes of vegetation types, distribution boundaries of forest and grass as well as restoration capacity of vegetation in different natural zones in the middle Yellow River. The annual precipitation of 530 mm is the critical annual pre-cipitation for forest and grass distribution in the middle Yellow River. Among the zonal and azonal environmental factors affecting watershed sediment yield, the intermediate diameter D50 (mm) of suspended load and forest coverage (V, %) play the leading role. Of them the effect weight of forest coverage (V, %) on catchments sediment yield is only 3.4% less than the role of the intermediate diameter (D50, mm), they are almost the same. To effectively control soil erosion in semiarid, especially in hilly-gullied areas and make sediment transport modulus reduce to less than 6000 t/km2, it is rather difficult by merely relying on natural restoration of forest. In the process of cultivated land conversion into forest land and grassland, measures suiting local conditions should be adopted in tree species selection and artificial afforestation (grass planting) based on management with biological measures for slopeland and engineering measures for hilly-gullied areas, so that watershed forest coverage in key counties can reach at least over 30%.Compared with the standard period of precipitation prior to the 1960s, with the decrease of an-nual precipitation at various periods, plant productivities decline to different degrees under natural conditions. The main reason accountable for the low survival rate of new seedlings and grass over years is due to precipitation decrease. In light with regression models of annual pre-cipitation and natural vegetation productivities, it is possible to obtain estimated values of wa-tershed natural vegetation productivity and eco-water consumption needed for the restoration to the standard period respectively for the present time or arbitrary period since the 1970s, thus providing a scientific basis for forest and grassland restoration in the middle Yellow River and the management prospect.展开更多
基金National Natural Science Foundation of China, No.90502004 Knowledge Innovation Project of the CAS, No.KZCX2-YW-Q10-3-4, No.KZCX2-YW-Q10-3
文摘We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots. It is noted that groundwater depth, soil moisture and plant species diversity are closely related. It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River. We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas. Based on different vegetation types and acreage with different groundwater depth, the total ecological water demand (EWD) of natural vegetation in 2005 was 2.4×10^8 m^3 in the lower reaches of the Tarim River. Analyzing the monthly EWD, we found that the EWD in the growth season (from April to September) is 81% of the year's total EWD. The EWD in May, June and July was 47% of the year's total EWD, which indicates the best time for dispensing artificial water. This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin.
基金Project supported by the National Natural Science Foundation of China (No.30470329,40671036,30600092)"Xibuzhiguang"Project of the Chinese Academy of Sciences (CAS).
文摘Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of Tadm River by transferring water from Bosten Lake, through the river channel, to the lower reaches. This study describes the changes in groundwater depth during the water transfer and the respondence of riparian vegetation to alterations in groundwater levels. The results indicate that groundwater depth along the Tarim River channel has a significant spatial-temporal component. Groundwater levels closest to the river channel show the most immediate and pronounced changes as a response to water transfer while those further away respond more slowly, although the observed change appears to be longer in duration. With a rise in the groundwater level, natural vegetation responded with higher growth rates, biomass and biodiversity. These favorable changes show that it is feasible to protect and restore the degraded natural vegetation by raising the groundwater depth. Plant communities are likely to reflect the hysteresis phenomenon, requiting higher water levels to initiate and stimulate desired growth than what may be needed to maintain the plant community. Because different species have different ecologies, including different root depths and densities and water needs, their response to increasing water availability will be spatially and temporally heterogenous. The response of vegetation is also influenced by microtopography and watering style. This paper discusses strategies for the protection and restoration of the degraded vegetation in the lower reaches of the Tarim River and provides information to complement ongoing theoretical research into ecological restoration in add or semi-arid ecosystems.
基金Thanks to Dr.Yin Lihe of Xi'an Center of China Geology Survey for his hard workon the English translation of this paper.This study was supported by Geological Survey Project of China Geological Survey(DD20160291).
文摘To accurately evaluate ecological risks trigged by groundwater exploitation,it must be clarified the relationship between vegetation and groundwater.Based on remote sensing data sets MOD13Q1,groundwater table depth(WTD)and total dissolved solids(TDS),the relationship between groundwater and natural vegetation was analyzed statistically in the main plain areas of Qaidam Basin.The results indicate that natural vegetation is groundwater-dependent in areas where WTD is less than 5.5 m and TDS is less than 7.5 g/L.Aquatic vegetation,hygrophytic vegetation and hygrophytic saline-alkali tolerant vegetation are mainly distributed in areas with WTD<1.1 m.Salt-tolerant and mesophytic vegetation mainly occur in areas with WTD of 1.4-3.5 m,while the xerophytic vegetation isprimarily present in areas where WTD ranges from 1.4 m to 5.5 m.Natural vegetation does not necessarily depend on groundwater in areas with WTD>5.5 m.For natural vegetation,the most suitable water TDS is less than 1.5 g/L,the moderately suitable TDS is 1.5-5.0 g/L,the basically suitable TDS is 5.0-7.5 g/L,and the unsuitable TDS is more than 7.5 g/L.
文摘The research aimed to analyze the linkage between natural vegetation, water dynamics and pyrite (FeS2) oxidation in tidal lowlands. The research was carried out in tidal lowland Pulau Rimau, South Sumatra from February to December 2010. The field observations are done by exploring several transect on land units. The field description refers to Soil Survey Staff. Water and soil samples were taken from selected key areas for laboratory analyses. The vegetation data were collected by making sample plots placed on each vegetation type with plot sizes 10 m × 10 m for secondary forests and 5 m × 5 m for shrubs and grass. The observations of surface water level were done during the river receding with units of meter above sea level (m.asl). The results shows that pyrite formation is largely determined by the availability of natural vegetation as S (sulfur) donors, climate and uncontrolled water balance and supporting faunas such as crabs and mud shrimp. Climate and water balance as well as supporting faunas is the main supporting factors to accelerate the process of formation pyrite. Oxidized pyrite increases soil pH thus toxic to fish, arable soils, plant growth, disturbing the water quality and soil nutrient availability. Oxidized pyrite is predominantly accelerated by the dynamics of river water and disturbed natural vegetation by human activities, and the pyrite oxidation management approach is divided into three main components of technologies, namely water management, land management and commodity management.
文摘Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cultural values and should be conserved in order to realize all these benefits. Kenya’s forests are rapidly declining due to pressure from increased population, technological innovation, urbanization human development and other land uses. Mau forest is one of the major forests in Kenya that is a catchment area for many Great Rift Valley lakes within the country and faces a lot of destruction. Continued destruction of the Mau forest will cause catastrophic environmental damage, resulting in massive food crises and compromising the livelihoods of millions of Kenyans, and the possible collapse of the tourism industry. The purpose of this research was to investigate the relationship between the increasing rate of deforestation and the reduction of the volumes of water in the neighboring lakes between the years 1989 to 2010. Satellite images from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) were used for the detection of changes in the Mau forest and the dynamics of the neighboring water bodies that included lakes: Naivasha, Baringo, Nakuru, Elementaita and Bogoria. The research showed that from a period of 1989 to 2010 Mau forest has been decreasing due to deforestation and the water bodies have irregular dynamics in that, from 1989 to 2000, there was rise in the volume of water, this is attributed to the El Nino rains experienced in the country during the year 1997 and 1998. But between 2000 and 2010 the volume decreased as the forest is also decreasing. It is recommended that the government creates awareness to sensitize the public on the importance of such forests as catchment areas in Kenya.
基金Foundation of Northeast China Innovation and Opening Laboratory of Eco-Meteorology,CMA,No.stqx2017zd01Special Projects of Climate Change of CMA,No.CCSF201512+1 种基金Foundation of Institute of Atmospheric Environment in Shenyang,CMA,No.2016SYIAE11National Natural Science Foundation of China,No.41165005
文摘Drought has become a problem that is universally faced by global terrestrial ecosystems. Northeast China is located in a region sensitive to global climate changes, and one of the main impacts of climate changes in Northeast China is manifested as drought in growing seasons. This study analyzes the spatio-temporal evolution law of the water use efficiency(WUE) of the main natural vegetation(i.e., cold-temperate coniferous forests, temperate pine-broad-leaved mixed forests, warm-temperate deciduous broad-leaved forests, and grasslands) in Northeast China based on public MODIS data products, including MCD12 Q1, MOD15 A2 H, MOD16 A2, and MOD17 A3 H, and meteorological data from 2002 to 2013. The influence of drought events on the WUE of different vegetation types and their response to drought events are also investigated. The study findings are as follows:(1) drought in Northeast China frequently occurs in the regions stretching from 114.55°E to 120.90°E, and the percentage of drought area among the forests is lower than that among the grasslands during these years;(2) the annual average WUE of the natural vegetation ranges from 0.82 to 1.08 C/kg^(-1) H_2O, and the WUE of forests(0.82 to 1.08 C/kg^(-1) H_2O) is universally higher than that of grasslands(0.84 to 0.99 C/kg^(-1) H_2O);(3) in 2008, the regions where the WUE in drought conditions is higher than that in normal water conditions account for 86.11% of the study area, and a significant linear positive correlation is found between the WUE in drought conditions and the WUE in normal water conditions, whereas the degree of drought does not influence the WUE of the natural vegetation in an obviously linear manner; and(4) the WUE for the cold-temperate coniferous forests and temperate pine-broad-leaved mixed forests with a high ET or low NPP is more likely to rise in drought conditions; the WUE for the grasslands with a low Evapotranspiration(ET), Net Primary Production(NPP), and Leaf Area Index(LAI) is more likely to rise in drought conditions; and the ET, NPP, and LAI have no significant influence on the WUE for the warm-temperate deciduous broad-leaved forests in drought conditions. This study contributes to improving the evaluation of the influence of drought on natural ecosystems.
基金supported by the National Natural Science Foundation of China(Grant No.90102007)the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX1-08-03).
文摘This paper analyzes the monitored data of the 4 times of stream water conveyances to the river section where the stream flow was cut-off, of 9 groundwater-monitoring sections and 18 vegetation plots in the lower reaches of Tarim River. The results show that the groundwater depth in the lower reaches of Tarim River rose from 9.87 m before the conveyances to 7.74 m and 3.79 m after the first and second conveyances, 3.61 and 3.16 m after the 2 phases of the third conveyance, and 2.66 m after the fourth conveyance. The transverse response scope of groundwater level was gradually enlarged along both sides of the channel of conveyances, i.e., from 450 m in width after the first conveyance to 1050 m after the fourth conveyance, but the response degree of groundwater level was reduced with the increase of the distance away from the channel of conveyances. The composition, distribution and growth status of the natural vegetation are directly related to the groundwater depth. The indexes of Simpson’s biodiversity, McIntosh’s evenness and Margalef’s richness, which reflect the change of the quantity of species and the degree of biodiversity, are reduced from 0.70, 0.48 and 0.90 to 0.26, 0.17 and 0.37 re- spectively along with the drawdown of groundwater level from the upper reaches to the lower reaches. After the stream water conveyances, the natural vegetation in the lower reaches is saved and restored along with the rise of groundwater level, the response scope of vegetation is gradually enlarged, i.e., from 200— 250 m in width after the first conveyance to 800 m after the fourth conveyance. However, there is still a great disparity to the objective of protecting the “Green Corridor”in the lower reaches of Tarim River. Thus, it is suggested to convey the stream water in double-channel way, combine the conveyance with water supply in surface scope, or construct the modern pipe-conveyance network systems so as to save the natural vegetation in an intensive way, achieve the efficient water consumption and speed up the restoration and re- generation of the damaged ecosystems in the lower reaches of Tarim River.
基金the National Natural Science Foundation of China and the Key Funding Project of the Yellow River Conservancy Commission(Grant No.50239080)the National Natural Science Foundation of China(Grant Nos.40471085 , 30440034) the University of Hong Kong(CX10G-A00-05-02).
文摘According to the characteristics of water and erosion environments of different natural zones on the Loess Plateau, this paper studies changes of vegetation types, distribution boundaries of forest and grass as well as restoration capacity of vegetation in different natural zones in the middle Yellow River. The annual precipitation of 530 mm is the critical annual pre-cipitation for forest and grass distribution in the middle Yellow River. Among the zonal and azonal environmental factors affecting watershed sediment yield, the intermediate diameter D50 (mm) of suspended load and forest coverage (V, %) play the leading role. Of them the effect weight of forest coverage (V, %) on catchments sediment yield is only 3.4% less than the role of the intermediate diameter (D50, mm), they are almost the same. To effectively control soil erosion in semiarid, especially in hilly-gullied areas and make sediment transport modulus reduce to less than 6000 t/km2, it is rather difficult by merely relying on natural restoration of forest. In the process of cultivated land conversion into forest land and grassland, measures suiting local conditions should be adopted in tree species selection and artificial afforestation (grass planting) based on management with biological measures for slopeland and engineering measures for hilly-gullied areas, so that watershed forest coverage in key counties can reach at least over 30%.Compared with the standard period of precipitation prior to the 1960s, with the decrease of an-nual precipitation at various periods, plant productivities decline to different degrees under natural conditions. The main reason accountable for the low survival rate of new seedlings and grass over years is due to precipitation decrease. In light with regression models of annual pre-cipitation and natural vegetation productivities, it is possible to obtain estimated values of wa-tershed natural vegetation productivity and eco-water consumption needed for the restoration to the standard period respectively for the present time or arbitrary period since the 1970s, thus providing a scientific basis for forest and grassland restoration in the middle Yellow River and the management prospect.
文摘对塔里木河下游断流河道2000~2002年9个地下水监测断面和18个植被样地的实地监测资料分析表明,地下水埋深对天然植被的组成、分布及长势有直接关系.地下水位的不断下降和土壤含水率大大丧失是引起塔里木河下游植被退化的主导因子.塔里木河下游的四次输水对其下游地下水位抬升起到了积极作用,河道附近地下水位呈逐级抬升过程,横向影响范围达1000 m左右,纵向上,表现为上段地下水抬升幅度较大(达84%),下段抬升幅度较小(6%).随着地下水位的抬升,天然植被的响应范围由第一次输水后的200~250 m,扩展到第四次输水的800 m.