Speech resampling is a typical tempering behavior,which is often integrated into various speech forgeries,such as splicing,electronic disguising,quality faking and so on.By analyzing the principle of resampling,we fou...Speech resampling is a typical tempering behavior,which is often integrated into various speech forgeries,such as splicing,electronic disguising,quality faking and so on.By analyzing the principle of resampling,we found that,compared with natural speech,the inconsistency between the bandwidth of the resampled speech and its sampling ratio will be caused because the interpolation process in resampling is imperfect.Based on our observation,a new resampling detection algorithm based on the inconsistency of band energy is proposed.First,according to the sampling ratio of the suspected speech,a band-pass Butterworth filter is designed to filter out the residual signal.Then,the logarithmic ratio of band energy is calculated by the suspected speech and the filtered speech.Finally,with the logarithmic ratio,the resampled and original speech can be discriminated.The experimental results show that the proposed algorithm can effectively detect the resampling behavior under various conditions and is robust to MP3 compression.展开更多
The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted...The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted a lot of research interest.However,because of inherent ambiguity,spectrum-based methods fail to discriminate upscale and downscale operations without any prior information.In general,the application of resampling leaves detectable traces in both spatial domain and frequency domain of a resampled image.Firstly,the resampling process will introduce correlations between neighboring pixels.In this case,a set of periodic pixels that are correlated to their neighbors can be found in a resampled image.Secondly,the resampled image has distinct and strong peaks on spectrum while the spectrum of original image has no clear peaks.Hence,in this paper,we propose a dual-stream convolutional neural network for image resampling factors estimation.One of the two streams is gray stream whose purpose is to extract resampling traces features directly from the rescaled images.The other is frequency stream that discovers the differences of spectrum between rescaled and original images.The features from two streams are then fused to construct a feature representation including the resampling traces left in spatial and frequency domain,which is later fed into softmax layer for resampling factor estimation.Experimental results show that the proposed method is effective on resampling factor estimation and outperforms some CNN-based methods.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.61300055,U1736215,61672302)Zhejiang Natural Science Foundation(Grant No.LY17F020010,LZ15F020002)+1 种基金Ningbo Natural Science Foundation(Grant No.2017A610123)Ningbo University Fund(Grant No.XKXL1509,XKXL1503)and K.C.Wong Magna Fund in Ningbo University.
文摘Speech resampling is a typical tempering behavior,which is often integrated into various speech forgeries,such as splicing,electronic disguising,quality faking and so on.By analyzing the principle of resampling,we found that,compared with natural speech,the inconsistency between the bandwidth of the resampled speech and its sampling ratio will be caused because the interpolation process in resampling is imperfect.Based on our observation,a new resampling detection algorithm based on the inconsistency of band energy is proposed.First,according to the sampling ratio of the suspected speech,a band-pass Butterworth filter is designed to filter out the residual signal.Then,the logarithmic ratio of band energy is calculated by the suspected speech and the filtered speech.Finally,with the logarithmic ratio,the resampled and original speech can be discriminated.The experimental results show that the proposed algorithm can effectively detect the resampling behavior under various conditions and is robust to MP3 compression.
基金the National Natural Science Foundation of China(No.62072480)the Key Areas R&D Program of Guangdong(No.2019B010136002)the Key ScientificResearch Program of Guangzhou(No.201804020068).
文摘The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted a lot of research interest.However,because of inherent ambiguity,spectrum-based methods fail to discriminate upscale and downscale operations without any prior information.In general,the application of resampling leaves detectable traces in both spatial domain and frequency domain of a resampled image.Firstly,the resampling process will introduce correlations between neighboring pixels.In this case,a set of periodic pixels that are correlated to their neighbors can be found in a resampled image.Secondly,the resampled image has distinct and strong peaks on spectrum while the spectrum of original image has no clear peaks.Hence,in this paper,we propose a dual-stream convolutional neural network for image resampling factors estimation.One of the two streams is gray stream whose purpose is to extract resampling traces features directly from the rescaled images.The other is frequency stream that discovers the differences of spectrum between rescaled and original images.The features from two streams are then fused to construct a feature representation including the resampling traces left in spatial and frequency domain,which is later fed into softmax layer for resampling factor estimation.Experimental results show that the proposed method is effective on resampling factor estimation and outperforms some CNN-based methods.