期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Speech Resampling Detection Based on Inconsistency of Band Energy
1
作者 Zhifeng Wang Diqun Yan +2 位作者 Rangding Wang Li Xiang Tingting Wu 《Computers, Materials & Continua》 SCIE EI 2018年第8期247-259,共13页
Speech resampling is a typical tempering behavior,which is often integrated into various speech forgeries,such as splicing,electronic disguising,quality faking and so on.By analyzing the principle of resampling,we fou... Speech resampling is a typical tempering behavior,which is often integrated into various speech forgeries,such as splicing,electronic disguising,quality faking and so on.By analyzing the principle of resampling,we found that,compared with natural speech,the inconsistency between the bandwidth of the resampled speech and its sampling ratio will be caused because the interpolation process in resampling is imperfect.Based on our observation,a new resampling detection algorithm based on the inconsistency of band energy is proposed.First,according to the sampling ratio of the suspected speech,a band-pass Butterworth filter is designed to filter out the residual signal.Then,the logarithmic ratio of band energy is calculated by the suspected speech and the filtered speech.Finally,with the logarithmic ratio,the resampled and original speech can be discriminated.The experimental results show that the proposed algorithm can effectively detect the resampling behavior under various conditions and is robust to MP3 compression. 展开更多
关键词 resampling detection logarithmic ratio band energy robustness
下载PDF
Resampling Factor Estimation via Dual-Stream Convolutional Neural Network 被引量:1
2
作者 Shangjun Luo Junwei Luo +4 位作者 Wei Lu Yanmei Fang Jinhua Zeng Shaopei Shi Yue Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第1期647-657,共11页
The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted... The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted a lot of research interest.However,because of inherent ambiguity,spectrum-based methods fail to discriminate upscale and downscale operations without any prior information.In general,the application of resampling leaves detectable traces in both spatial domain and frequency domain of a resampled image.Firstly,the resampling process will introduce correlations between neighboring pixels.In this case,a set of periodic pixels that are correlated to their neighbors can be found in a resampled image.Secondly,the resampled image has distinct and strong peaks on spectrum while the spectrum of original image has no clear peaks.Hence,in this paper,we propose a dual-stream convolutional neural network for image resampling factors estimation.One of the two streams is gray stream whose purpose is to extract resampling traces features directly from the rescaled images.The other is frequency stream that discovers the differences of spectrum between rescaled and original images.The features from two streams are then fused to construct a feature representation including the resampling traces left in spatial and frequency domain,which is later fed into softmax layer for resampling factor estimation.Experimental results show that the proposed method is effective on resampling factor estimation and outperforms some CNN-based methods. 展开更多
关键词 Image forensics image resampling detection parameter estimation convolutional neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部