期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of petrophysical cutoffs of reservoir intervals with production capacity and with accumulation capacity in clastic reservoirs 被引量:4
1
作者 Wang Yanzhong Cao Yingchang +3 位作者 Song Guoqi Song Ling Yang Tian Zhang Shaomin 《Petroleum Science》 SCIE CAS CSCD 2014年第2期211-219,共9页
Methodologies have been developed for calculating cutoffs of reservoir intervals with production capacity (RIPC) and reservoir intervals with accumulation capacity (RIAC) according to the types of pore throat stru... Methodologies have been developed for calculating cutoffs of reservoir intervals with production capacity (RIPC) and reservoir intervals with accumulation capacity (RIAC) according to the types of pore throat structures and dynamic force by using data from petrophysical analysis, production tests and mercury injection. The data are from clastic reservoirs in the third member (Es3) and the fourth member (Es4) of the Shahejie Formation in the Shengtuo area on the North Slope of the Dongying Sag, Jiyang Depression, China. The method of calculating cutoffs of RIPC is summarized as follows: 1) determination of permeability cutoffs of RIPC; 2) classification of types of pore-throat structures according to mercury injection data and then relating porosity to permeability and determining the relationship between porosity and permeability according to each type of pore-throat structure; and 3) calculating porosity cutoffs of RIPC using established correlation between porosity and permeability according to the type of pore throat structure. The method of calculating cutoffs of RIAC includes: 1) establishing a functional relationship between oil-water interracial tension and formation temperature; 2) calculating limiting values of maximum connected pore-throat radii according to formation temperature and dynamic forces of each reservoir interval; 3) correlating permeability with maximum connected pore-throat radius and then obtaining permeability cutoffs of RIAC; and 4) calculating porosity cutoffs on the basis of permeability cutoffs according to specific correlations, suitable for the type of porethroat structure. The results of this study show that porosity and permeability cutoffs of clastic reservoirs decrease with depth. For a fixed permeability cutoff, the porosity cutoff of R1PC varies because the type of pore throat is different. At a fixed temperature, porosity and permeability cutoffs of RIAC decrease as dynamic force increases. For a fixed permeability cutoff of effective hydrocarbon accumulation, the porosity cutoff also varies with different types of pore throat. 展开更多
关键词 Effective reservoir petrophysical cutoff of reservoir intervals with production capacity(RIPC) petrophysical cutoff of reservoir intervals with accumulation capacity (RIAC) clastic rocks
下载PDF
Critical tectonic events and their geological controls on deep buried coalbed methane accumulation in Daning-Jixian Block, eastern Ordos Basin 被引量:2
2
作者 Taotao YAN Shan HE +6 位作者 Shuai ZHENG Yadong BAI Wei CHEN Yanjun MENG Shangwen JIN Huifang YAO Xiaobao JIA 《Frontiers of Earth Science》 SCIE CSCD 2023年第1期197-217,共21页
Commercial exploration and development of deep buried coalbed methane (CBM) in Daning-Jixian Block, eastern margin of Ordos Basin, have rapidly increased in recent decades. Gas content, saturation and well productivit... Commercial exploration and development of deep buried coalbed methane (CBM) in Daning-Jixian Block, eastern margin of Ordos Basin, have rapidly increased in recent decades. Gas content, saturation and well productivity show significant heterogeneity in this area. To better understand the geological controlling mechanism on gas distribution heterogeneity, the burial history, hydrocarbon generation history and tectonic evolution history were studied by numerical simulation and experimental simulation, which could provide guidance for further development of CBM in this area. The burial history of coal reservoir can be classified into six stages, i.e., shallowly buried stage, deeply burial stage, uplifting stage, short-term tectonic subsidence stage, large-scale uplifting stage, sustaining uplifting and structural inversion stage. The organic matter in coal reservoir experienced twice hydrocarbon generation. Primary and secondary hydrocarbon generation processes were formed by the Early and Middle Triassic plutonic metamorphism and Early Cretaceous regional magmatic thermal metamorphism, respectively. Five critical tectonic events of the Indosinian, Yanshanian and Himalayan orogenies affect different stages of the CBM reservoir accumulation process. The Indosinian orogeny mainly controls the primary CBM generation. The Yanshanian Orogeny dominates the second gas generation and migration processes. The Himalayan orogeny mainly affects the gas dissipation process and current CBM distribution heterogeneity. 展开更多
关键词 deep buried coalbed methane coal reservoir accumulation evolution numerical simulation Daning-Jixian Block
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部