Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori...Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.展开更多
The effects of optimized operation principles implemented at reservoirs on the Wujiang River in southwest China between September 2009 and April 2010 under drought conditions were analyzed based on operational data co...The effects of optimized operation principles implemented at reservoirs on the Wujiang River in southwest China between September 2009 and April 2010 under drought conditions were analyzed based on operational data collected from the Guizhou Wujiang Hydropower Development Co., Ltd. A set of linear regression equations was developed to identify the key factors impacting the electric power generation at reservoirs. A 59% reduction in the inflow discharge at the Hongjiadu Reservoir led to a decrease of only 38% in the total electric power generation at the Hongjiadu, Dongfeng, Suofengying, and Wujiangdu reservoirs on the Wujiang River, indicating that optimized operation can play an important role in drought management. The water level and the amount of other water inputs at the Hongjiadu Reservoir and the outflow discharge at all of the reservoirs except the Wujiangdu Reservoir were key factors affecting the total electric power generation at reservoirs on the Wujiang River under optimized operation.展开更多
The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of re...The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.展开更多
Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for ...Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0-1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33-0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00-187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.展开更多
After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate th...After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.展开更多
This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules...This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules. With a case study of the China’s Three Gorges Reservoir, long-term operating rules are obtained. Based on the derived operating rules, the reservoir is simulated with the inflow from 1882 to 2005, which the mean hydropower generation is 85.71 billion kWh. It is shown that the SDP works well in the reservoir operation.展开更多
Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is estab...Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is established which combines the ecology and power generation. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of ecological water demand as objectives, and water quantity balance of reservoir, reservoir storage, discharge flow, output and so on as constraints. Chaotic genetic arithmetic is developed to solve the optimal model. An example is studied, showing that the annual generation of the proposed model is 8 million kW?h less than that model without ecology consideration, which is about 0.28 percent. But the proposed model is in favor of river ecology protection, and can promote the sustainable utilization of water resources. So it is worthy and necessary for the optimal operation of hydropower reservoir with ecology consideration.展开更多
A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., id...A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method.展开更多
This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transf...This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.展开更多
This paper includes an application of Differential Evolution (DE) for the optimal operation of multipurpose reservoir. The objective of the study is to maximize the hydropower production. The constraints for the optim...This paper includes an application of Differential Evolution (DE) for the optimal operation of multipurpose reservoir. The objective of the study is to maximize the hydropower production. The constraints for the optimization problem are reservoir capacity, turbine release capacity constraints, irrigation supply demand constraints and storage continuity. For initializing population, the upper and lower bounds of decision variables are fixed. The fitness of each vector is evaluated. The mutation and recombination is performed. The control parameters, i.e., population size, crossover constant and the weight are fixed according to their fitness value. This procedure is performed for the ten different strategies of DE. Sensitivity analysis performed for ten strategies of DE suggested that, De/best/1/bin is the best strategy which gives optimal solution. The DE algorithm application is presented through Jayakwadi project stage-I, Maharashtra State, India. Genetic algorithm is utilized as a comparative approach to assess the ability of DE. The results of GA and ten DE strategies for the given parameters indicated that both the results are comparable. The model is run for dependable inflows. Monthly maximized hydropower production and irrigation releases are presented. These values will be the basis for decision maker to take decisions regarding operation policy of the reservoir. Results of application of DE model indicate that the maximized hydropower production is 30.885 ×106 kwh and the cor-responding irrigation release is 928.44 Mm3.展开更多
In the present study, a Linear Programming (LP) model is developed for the conjunctive use of surface water and ground water to obtain the optimal operating policy for a multipurpose single reservoir. The objective of...In the present study, a Linear Programming (LP) model is developed for the conjunctive use of surface water and ground water to obtain the optimal operating policy for a multipurpose single reservoir. The objective of the present study is to maximize the net benefit from the command area under consideration. The constraints imposed on the objective function are maximum and minimum irrigation demands, reservoir storages and canal capacity. The model takes into account the continuity constraint which includes inflows in to the reservoir, releases for irrigation, releases for hydro-power generation, evaporation losses, feeder canal releases, initial and final storages in the reservoir in each time period. The developed model is applied to the case study of Jayakwadi reservoir stage-I, built across river Godavari, Maharashtra, India. Initially the model is solved for the availability of surface water which results in net benefit of 3373.45 million rupees with irrigation intensity is 57.07%. Next the model solved by considering the availability of surface water and available potential of groundwater in the area, which results in net benefits of 3590.02 million rupees with an intensity of irrigation 58.48%. The present model takes in to account the socio-economic requirement of growing the essential crops to meet the requirement of the society. The model has also generated the canal wise optimal releases for irrigation and power, monthly utilization of groundwater, storages in the reservoir at the end of every month and corresponding head over the turbine.展开更多
Reservoirs play an important role in the development of economy and society, as well as the maintenance of ecological balance. The reservoir operational security can make every function of reservoirs fully played. Thi...Reservoirs play an important role in the development of economy and society, as well as the maintenance of ecological balance. The reservoir operational security can make every function of reservoirs fully played. This paper makes a systematic analysis on the meaning of reservoir operational security and builds up a framework system of it from the perspective of organization and system. On this3 basis, the paper researches the contents and indexes of reservoir operational security from the microscopic, intermediate and macroscopic aspects. The results of this paper provide a foundation for further research on reservoir operational security management.展开更多
Stochastic dynamic programming (SDP) is extensively used in the optimization for long-term reservoir operations. Generally, both of the steady state optimal policy and its associated performance indices (PIs) for mult...Stochastic dynamic programming (SDP) is extensively used in the optimization for long-term reservoir operations. Generally, both of the steady state optimal policy and its associated performance indices (PIs) for multipurpose reservoir are of prime importance. To derive the PIs there are two typical ways: simulation and probability formula. Among the disadvantages, one is that these approaches require the pre-specified operation policy. IHuminated by the convergence of objective function in SDP, a new approach, which has the advantage that its use can be concomitant with the solving of SDP, is proposed to determine the desired PIs. In the case study, its efficiency is also practically tested.展开更多
This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of do...This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of downstream environmental flow of reservoir as well as water demand is challenging in the semi-arid area especially in dry years.In this study,water supply and environmental flow supply were 40%and 30%in the droughts,respectively.Moreover,mean errors of supplying water demand as well as environmental flow in dry years were 6 and 9 m3/s,respectively.Hence,these results highlight that ecological stresses of the downstream aquatic habitats as well as water supply loss are considerably escalated in dry years,which implies even using environmental optimal operation is not able to protect downstream aquatic habitats properly in the severe droughts.Moreover,available storage in reservoir will be remarkably reduced(averagely more than 30×106 m3 compared with optimal storage equal to 70×106 m3),which implies strategic storage of reservoir might be threatened.Among used evolutionary algorithms,particle swarm optimization(PSO)was selected as the best algorithm for solving the novel proposed objective function.The significance of this study is to propose a novel objective function to optimize reservoir operation in which environmental flow supply is directly addressed and integrated with drought analysis.This novel form of optimization system can overcome uncertainties of the conventional objective function due to considering environmental flow in the objective function as well as drought analysis in the context of reservoir operation especially applicable in semi-arid areas.The results indicate that using either other water resources for water supply or reducing water demand is the only solution for managing downstream ecological impacts of the river ecosystem.In other words,the results highlighted that replanning of water resources in the study area is necessary.Replacing the conventional optimization system for reservoir operation in the semi-arid area with proposed optimization system is recommendable to minimize the negotiations between stakeholders and environmental managers.展开更多
In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and M...In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.展开更多
The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system...The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system of water abstraction works along the rivers. However, due to the impact of climate change and pressure from socio-economic development, the operation of the reservoir system according to Decision No. 740/QD-TTg was issued on June 17, 2019 by the Prime Minister of Government promulgating the Red-Thai Binh River system inter-reservoir operation rules (Operation rules 740) has some shortcomings that need adjustments for higher water use efficiency, meeting downstream water demand and power generation benefits. Through the results of water balance calculation and analysis of economic benefits from water use scenarios, this research proposed adjustment to the inter-reservoir operation during dry season in the Red River system. The result showed that an average water level of 1.0 - 1.7 m should be maintained at Hanoi during the increased release period.展开更多
In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimizati...In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.展开更多
The cascade hydropower system composed of Pangduo reservoir and Zhikong reservoir are formed on the middlereach of the main Lasahe river. For giving full play of joint compensation effect of the two reservoirs, the pa...The cascade hydropower system composed of Pangduo reservoir and Zhikong reservoir are formed on the middlereach of the main Lasahe river. For giving full play of joint compensation effect of the two reservoirs, the paper studied the joint operationscheme for Pangduo reservoir and Zhikong reservoir. Based on the respective operation scheme, a reservoir group joint operationmodel is built, the model is solved by the simulation- optimization method, and then the practical and operational scheme isachieved. The scheme could give full play of the joint regulation and storage effect of the reservoir group and improve effectivelythe utilization factor of hydropower resources.展开更多
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Maj...The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Majiagou landslide as an example,this paper analyses the comprehensive performance of the landslide from a probabilistic point of view.Under a reservoir operation cycle,a series of numerical analyses are carried out to simulate the migration of the seepage field,then the dynamic stability of the landslide is quantified accordingly.Subsequently,the wetting-drying cycles test is used to model the weakening of strength parameters in hydro-fluctuation belt under the long-term reservoir operation.Considering the weakening effect of long-term reservoir operation on the hydrofluctuation belt,the system reliability is evaluated using the Ditlevsen's bounds.The results suggest that the reservoir operation can affect the stability of the landslide by changing the seepage field.The system failure probability gradually rises as the number of wetting-drying cycles increases.Compared with conventional probabilistic analysis that calculates the failure probability of each sliding surface mechanically,analyzing the landslide in terms of system reliability can effectively narrow the failure probability range,which provides an insightful idea for evaluating the systematic stability of analogous reservoir landslides.展开更多
基金supported by the Foundation of the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province(Grant No.181RTSTHN009)the Foundation of the Key Laboratory of Water Environment Simulation and Treatment in Henan Province(Grant No.2017016).
文摘Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.
基金supported by the National Natural Science Foundation of China (Grant No. 51109229)
文摘The effects of optimized operation principles implemented at reservoirs on the Wujiang River in southwest China between September 2009 and April 2010 under drought conditions were analyzed based on operational data collected from the Guizhou Wujiang Hydropower Development Co., Ltd. A set of linear regression equations was developed to identify the key factors impacting the electric power generation at reservoirs. A 59% reduction in the inflow discharge at the Hongjiadu Reservoir led to a decrease of only 38% in the total electric power generation at the Hongjiadu, Dongfeng, Suofengying, and Wujiangdu reservoirs on the Wujiang River, indicating that optimized operation can play an important role in drought management. The water level and the amount of other water inputs at the Hongjiadu Reservoir and the outflow discharge at all of the reservoirs except the Wujiangdu Reservoir were key factors affecting the total electric power generation at reservoirs on the Wujiang River under optimized operation.
基金supported by the National Eleventh Five-Year Water Project Funded Projects of China (Grant No.2008ZX07209-002-04)the North China University of Water Resources and Electric Power Funded Projects (Grants No.200907 and 200910)the Scientific Research Fund for the Returned Overseas Chinese Scholars
文摘The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.
基金supported by the National Natural Science Foundation of China(Grants No.51569003 and 51579059)the Natural Science Foundation of Guangxi Province(Grant No.2017GXNSFAA198361)the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2017052)
文摘Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0-1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33-0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00-187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.
基金supported by the Nonprofit Scientific Research Project of the Ministry of Water Resources of China (Grant No. 20081035)the National Fund for Major Projects of Water Pollution Control (Grant No. 2009ZX07104-006)
文摘After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.
文摘This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules. With a case study of the China’s Three Gorges Reservoir, long-term operating rules are obtained. Based on the derived operating rules, the reservoir is simulated with the inflow from 1882 to 2005, which the mean hydropower generation is 85.71 billion kWh. It is shown that the SDP works well in the reservoir operation.
文摘Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is established which combines the ecology and power generation. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of ecological water demand as objectives, and water quantity balance of reservoir, reservoir storage, discharge flow, output and so on as constraints. Chaotic genetic arithmetic is developed to solve the optimal model. An example is studied, showing that the annual generation of the proposed model is 8 million kW?h less than that model without ecology consideration, which is about 0.28 percent. But the proposed model is in favor of river ecology protection, and can promote the sustainable utilization of water resources. So it is worthy and necessary for the optimal operation of hydropower reservoir with ecology consideration.
基金Supported by Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R&D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method.
基金supported by the National Natural Science Foundation of China(Grants No.51339004 and 71171151)
文摘This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.
文摘This paper includes an application of Differential Evolution (DE) for the optimal operation of multipurpose reservoir. The objective of the study is to maximize the hydropower production. The constraints for the optimization problem are reservoir capacity, turbine release capacity constraints, irrigation supply demand constraints and storage continuity. For initializing population, the upper and lower bounds of decision variables are fixed. The fitness of each vector is evaluated. The mutation and recombination is performed. The control parameters, i.e., population size, crossover constant and the weight are fixed according to their fitness value. This procedure is performed for the ten different strategies of DE. Sensitivity analysis performed for ten strategies of DE suggested that, De/best/1/bin is the best strategy which gives optimal solution. The DE algorithm application is presented through Jayakwadi project stage-I, Maharashtra State, India. Genetic algorithm is utilized as a comparative approach to assess the ability of DE. The results of GA and ten DE strategies for the given parameters indicated that both the results are comparable. The model is run for dependable inflows. Monthly maximized hydropower production and irrigation releases are presented. These values will be the basis for decision maker to take decisions regarding operation policy of the reservoir. Results of application of DE model indicate that the maximized hydropower production is 30.885 ×106 kwh and the cor-responding irrigation release is 928.44 Mm3.
文摘In the present study, a Linear Programming (LP) model is developed for the conjunctive use of surface water and ground water to obtain the optimal operating policy for a multipurpose single reservoir. The objective of the present study is to maximize the net benefit from the command area under consideration. The constraints imposed on the objective function are maximum and minimum irrigation demands, reservoir storages and canal capacity. The model takes into account the continuity constraint which includes inflows in to the reservoir, releases for irrigation, releases for hydro-power generation, evaporation losses, feeder canal releases, initial and final storages in the reservoir in each time period. The developed model is applied to the case study of Jayakwadi reservoir stage-I, built across river Godavari, Maharashtra, India. Initially the model is solved for the availability of surface water which results in net benefit of 3373.45 million rupees with irrigation intensity is 57.07%. Next the model solved by considering the availability of surface water and available potential of groundwater in the area, which results in net benefits of 3590.02 million rupees with an intensity of irrigation 58.48%. The present model takes in to account the socio-economic requirement of growing the essential crops to meet the requirement of the society. The model has also generated the canal wise optimal releases for irrigation and power, monthly utilization of groundwater, storages in the reservoir at the end of every month and corresponding head over the turbine.
文摘Reservoirs play an important role in the development of economy and society, as well as the maintenance of ecological balance. The reservoir operational security can make every function of reservoirs fully played. This paper makes a systematic analysis on the meaning of reservoir operational security and builds up a framework system of it from the perspective of organization and system. On this3 basis, the paper researches the contents and indexes of reservoir operational security from the microscopic, intermediate and macroscopic aspects. The results of this paper provide a foundation for further research on reservoir operational security management.
基金Yunnan Natural Science Foundation under contract 98E004Z
文摘Stochastic dynamic programming (SDP) is extensively used in the optimization for long-term reservoir operations. Generally, both of the steady state optimal policy and its associated performance indices (PIs) for multipurpose reservoir are of prime importance. To derive the PIs there are two typical ways: simulation and probability formula. Among the disadvantages, one is that these approaches require the pre-specified operation policy. IHuminated by the convergence of objective function in SDP, a new approach, which has the advantage that its use can be concomitant with the solving of SDP, is proposed to determine the desired PIs. In the case study, its efficiency is also practically tested.
文摘This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of downstream environmental flow of reservoir as well as water demand is challenging in the semi-arid area especially in dry years.In this study,water supply and environmental flow supply were 40%and 30%in the droughts,respectively.Moreover,mean errors of supplying water demand as well as environmental flow in dry years were 6 and 9 m3/s,respectively.Hence,these results highlight that ecological stresses of the downstream aquatic habitats as well as water supply loss are considerably escalated in dry years,which implies even using environmental optimal operation is not able to protect downstream aquatic habitats properly in the severe droughts.Moreover,available storage in reservoir will be remarkably reduced(averagely more than 30×106 m3 compared with optimal storage equal to 70×106 m3),which implies strategic storage of reservoir might be threatened.Among used evolutionary algorithms,particle swarm optimization(PSO)was selected as the best algorithm for solving the novel proposed objective function.The significance of this study is to propose a novel objective function to optimize reservoir operation in which environmental flow supply is directly addressed and integrated with drought analysis.This novel form of optimization system can overcome uncertainties of the conventional objective function due to considering environmental flow in the objective function as well as drought analysis in the context of reservoir operation especially applicable in semi-arid areas.The results indicate that using either other water resources for water supply or reducing water demand is the only solution for managing downstream ecological impacts of the river ecosystem.In other words,the results highlighted that replanning of water resources in the study area is necessary.Replacing the conventional optimization system for reservoir operation in the semi-arid area with proposed optimization system is recommendable to minimize the negotiations between stakeholders and environmental managers.
文摘In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.
文摘The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system of water abstraction works along the rivers. However, due to the impact of climate change and pressure from socio-economic development, the operation of the reservoir system according to Decision No. 740/QD-TTg was issued on June 17, 2019 by the Prime Minister of Government promulgating the Red-Thai Binh River system inter-reservoir operation rules (Operation rules 740) has some shortcomings that need adjustments for higher water use efficiency, meeting downstream water demand and power generation benefits. Through the results of water balance calculation and analysis of economic benefits from water use scenarios, this research proposed adjustment to the inter-reservoir operation during dry season in the Red River system. The result showed that an average water level of 1.0 - 1.7 m should be maintained at Hanoi during the increased release period.
基金supported by the National Natural Science Foundation of China (Grant No. 50679011)
文摘In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.
文摘The cascade hydropower system composed of Pangduo reservoir and Zhikong reservoir are formed on the middlereach of the main Lasahe river. For giving full play of joint compensation effect of the two reservoirs, the paper studied the joint operationscheme for Pangduo reservoir and Zhikong reservoir. Based on the respective operation scheme, a reservoir group joint operationmodel is built, the model is solved by the simulation- optimization method, and then the practical and operational scheme isachieved. The scheme could give full play of the joint regulation and storage effect of the reservoir group and improve effectivelythe utilization factor of hydropower resources.
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
基金supported by the Postdoctoral Fellowship Program of CPSF(No.GZB20230607)the Fundamental Research Funds for the Central Universities(No.2682024CX125)+3 种基金the National Key R&D Program of China(No.2023YFC3007201)the National Natural Science Foundation of China(No.42377161)the Natural Science Foundation of Hubei Province(No.2023AFB580)the Guizhou Provincial Science and Technology Project(No.QKHZC[2023]YB127)。
文摘The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Majiagou landslide as an example,this paper analyses the comprehensive performance of the landslide from a probabilistic point of view.Under a reservoir operation cycle,a series of numerical analyses are carried out to simulate the migration of the seepage field,then the dynamic stability of the landslide is quantified accordingly.Subsequently,the wetting-drying cycles test is used to model the weakening of strength parameters in hydro-fluctuation belt under the long-term reservoir operation.Considering the weakening effect of long-term reservoir operation on the hydrofluctuation belt,the system reliability is evaluated using the Ditlevsen's bounds.The results suggest that the reservoir operation can affect the stability of the landslide by changing the seepage field.The system failure probability gradually rises as the number of wetting-drying cycles increases.Compared with conventional probabilistic analysis that calculates the failure probability of each sliding surface mechanically,analyzing the landslide in terms of system reliability can effectively narrow the failure probability range,which provides an insightful idea for evaluating the systematic stability of analogous reservoir landslides.