期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Prediction of rock brittleness using nondestructive methods for hard rock tunneling 被引量:5
1
作者 Rennie B.Kaunda Brian Asbury 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期533-540,共8页
Sand production is an undesired phenomenon occurring in unconsolidated formations due to shear failure and hydrodynamic forces. There have been many approaches developed to predict sand production and prevent it by ch... Sand production is an undesired phenomenon occurring in unconsolidated formations due to shear failure and hydrodynamic forces. There have been many approaches developed to predict sand production and prevent it by changing drilling or production strategies. However, assumptions involved in these approaches have limited their applications to very specific scenarios. In this paper, an elliptical model based on the borehole shape is presented to predict the volume of sand produced during the drilling and depletion stages of oil and gas reservoirs. A shape factor parameter is introduced to estimate the changes in the geometry of the borehole as a result of shear failure. A carbonate reservoir from the south of Iran with a solid production history is used to show the application of the developed methodology. Deriving mathematical equations for determination of the shape factor based on different failure criteria indicate that the effect of the intermediate principal stress should be taken into account to achieve an accurate result. However, it should be noticed that the methodology presented can only be used when geomechanical parameters are accurately estimated prior to the production stage when using wells and field data. 展开更多
关键词 Sand production Shape parameter failure criteria Carbonate reservoir Analytical solution
下载PDF
Prediction accuracy of reservoir break flood simulation model using finite volume method and UAV
2
作者 Jeongbae Jeon Won Choi 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期7-15,共9页
Methods for producing high-resolution digital topographic maps using an unmanned aerial vehicle(UAV),and 3D fluid dynamics simulation to estimate the flooded areas caused by a collapsed reservoir,were proposed in this... Methods for producing high-resolution digital topographic maps using an unmanned aerial vehicle(UAV),and 3D fluid dynamics simulation to estimate the flooded areas caused by a collapsed reservoir,were proposed in this paper.The UAV flight path for photographing damaged areas was divided into two sections considering the drone flight time and overlapping range of the images in the x-and y-directions.The metadata taken by the drone were transferred into world coordinates by tracking the key features of the photographs of nearby areas using a 3D rotation matrix.The point cloud data with a 3D space were extracted from the registered images,and a digital surface map(DSM)was produced using a point cloud classification geometric mapping technique.To amend the serious elevation errors caused by natural or artificial obstacles,a kriging interpolation method was used to reproduce the DSM.A transient computational simulation that considers both the complex geometric topology and hydrodynamic energy of flowing water was conducted using FLOW-3D software to deal with an renormalization group(RNG)turbulence model.The flooded areas calculated through visual reading using images taken by the UAV were compared with the 3D simulation results for verification.The flooded areas estimated through the simulation were approximately 18.3%larger than those found by visual reading.Turbulent flows were mainly observed in obstacles or curved areas of the stream,and the differences in the water depth could be further increased.However,the villagers confirmed that the flooded areas were much greater than what was seen through the visual reading.Therefore,the combination of UAV surveying and the 3D simulation method based on the RNG turbulence model is recommended to accurately estimate flooded areas,and it will support an administrative policy aimed at minimizing the economic costs of damage caused by future reservoir collapses. 展开更多
关键词 reservoir failure flooded area finite volume method unmanned aerial vehicle photogrammetric survey digital surface model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部