期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:3
1
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 reservoir rock slope RAINFALL reservoir water level fluctuation Deformation characteristics Slope failure mechanism
下载PDF
Analysis of the relationship between water level fluctuation and seismicity in the Three Gorges Reservoir(China) 被引量:5
2
作者 Lifen Zhang Jinggang Li +3 位作者 Guichun Wei Wulin Liao Qiuliang Wang Chuanfang Xiang 《Geodesy and Geodynamics》 2017年第2期96-102,共7页
The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequen... The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequent than that before water impoundment. In order to quantitatively study, the relationship between the water level fluctuation and earthquakes in TGR, we introduced statistical methods to attain the goal. First of all, we relocated the earthquakes in TGR region with double difference method and divided the earthquakes into 5 clusters with clustering analysis method. Secondly, to examine the impacts of water level fluctuation in different water filling stages on the seismic activity in the 5 clusters, a series of statistical analyses are applied. Pearson correlation results show that only the 175 m water level fluc- tuation has significantly positive impacts on the seismic activity in clusters I, II, III and V with correlation coefficients of 0.44, 0.38, 0.66 and 0.63. Cross-correlation analysis demonstrates that 0, ], 0 and 0 month time delay separately for the clusters I, II, III and V exists. It illustrated the influences of the water loading and pore pressure diffusion on induced earthquakes. Cointegration tests and impulse response analysis denoted that the 175 m water level only had long term and significant effects just on the seismic events in the intersection region of the Fairy Mount Fault and Nine-brook Fault. One standard deviation shock to 175 m water level increased the seismic activity in cluster V for the first 3 months, and then the negative influence was shown. After 7 months, the negative impulse response becomes stable. The long-term effect of the 175 m water impoundment also proved the important role of pore pressure diffusion in RIS with time. 展开更多
关键词 Three Gorges reservoir reservoir-induced seismicity Water level fluctuation Cross correlation Impulse response Pore pressure diffusion
下载PDF
Evaluation of the treatment effect of rear slope cutting on hydrodynamic pressure landslides:A case study
3
作者 WANG Li HUANG Jun-jie +4 位作者 CHEN Yong WANG Shi-mei FAN Zhi-hong GUO Fei LI Xiao-wei 《Journal of Mountain Science》 SCIE CSCD 2023年第7期1968-1983,共16页
After the impoundment of the Three Gorges Reservoir,some huge ancient landslides were reactivated and deformed,showing typical hydrodynamic pressure landslide characteristics.The Baishuihe landslide was a typical hydr... After the impoundment of the Three Gorges Reservoir,some huge ancient landslides were reactivated and deformed,showing typical hydrodynamic pressure landslide characteristics.The Baishuihe landslide was a typical hydrodynamic pressure landslide.The management department conducted slope cutting treatments from 2018 to 2019.To evaluate the treatment effect of rear slope cutting,this study analyzed the data of the surface deformation survey and field monitoring over the past 20 years and the characteristics of the reservoir water-triggered Baishuihe landslide deformation,and calculated the seepage field,displacement field,and stability coefficient before and after landslide treatment.The results showed that the deformation of the Baishuihe landslide was primarily related to a decrease in the reservoir water level.Owing to the poor permeability of the landslide soil,the decrease in the reservoir water level produced a seepage force pointing to the outside of the landslide body,leading to the step deformation of the landslide displacement.The landslide was treated by rear slope cutting,and the“step”deformation of the landslide disappeared after treatment.The hydrodynamic pressure caused by the change in reservoir water after cutting the slope did not disappear.However,as the slope cutting greatly reduced the overall sliding force of the landslide,its stability was greatly improved.Notably,high stability can still be ensured under extreme rainfall after treatment.Slope cutting is effective for treating hydrodynamic pressure landslides.This study can provide effective technical support for the treatment of reservoir landslides. 展开更多
关键词 Hydrodynamic pressure landslide Three Gorges reservoir Slope cutting Load reduction Landslide monitoring Ancient landslides reservoir water level fluctuation
下载PDF
Dynamic Response and Deformation Behavior of Kadui-2 Landslide Influenced by Reservoir Impoundment and Rainfall,Baoxing,China 被引量:5
4
作者 Muhammad Kamran Xiewen Hu +3 位作者 Muhammad Awais Hussain Muhammad Sanaullah Randa Ali Kun He 《Journal of Earth Science》 SCIE CAS CSCD 2023年第3期911-923,共13页
This study focuses on the deformation characteristics of Kadui-2 Landslide by the influence of reservoir filling-drawdown and precipitation.A three-year monitoring project was implemented in order to observe the short... This study focuses on the deformation characteristics of Kadui-2 Landslide by the influence of reservoir filling-drawdown and precipitation.A three-year monitoring project was implemented in order to observe the short/long-term deformation.The slide mass experienced consistent deformation with a maximum cumulative displacement of 331.34 cm.Based on the recorded data of reservoir water level and precipitation during this period,a two-dimensional(2-D)finite element model using Geostudio software was set up for deformation simulation under different conditions to understand the real influence of these triggering factors on landslide.The numerical simulation results are in consistent with monitoring field data.Both numerical simulation and field monitoring results exhibit that the maximum deformation occurred at the foreside of slumping mass.The slip surface shows significant creep characteristics decreasing as long-term shear strength reducing gradually.Reservoir water level fluctuation is the primary triggering factor to reactivate the landslide mass and has a negative correlation with deformation rate.Displacement rate increases with the reservoir drawdown and decreases with impoundment rise.Compared with reservoir filling-drawdown operation,rainfall has no significant effect on the slide motion of landslide due to limited penetration from the ground surface. 展开更多
关键词 LANDSLIDE reservoir water level fluctuation RAINFALL finite element method cumulative displacement deformation characteristics
原文传递
Applicability of Time Domain Reflectometry for Yuhuangge Landslide Monitoring 被引量:3
5
作者 晏鄂川 宋琨 李红刚 《Journal of Earth Science》 SCIE CAS CSCD 2010年第6期856-860,共5页
Yuhuangge (玉皇阁) landslide in Wushan (巫山), Chongqing (重庆), is one of the focal monitoring geological hazards in the Three Gorges Reservoir. Time domain reflectometry (TDR) and in-place inclinometers were... Yuhuangge (玉皇阁) landslide in Wushan (巫山), Chongqing (重庆), is one of the focal monitoring geological hazards in the Three Gorges Reservoir. Time domain reflectometry (TDR) and in-place inclinometers were arranged to monitor the deep deformation. Time domain reflectometry is based on transmitting an electromagnetic pulse into a coaxial cable grouted in rock or soil mass and watching for reflections of this transmission due to cable deformity induced by the ground deformation. Comparing the monitoring data of No. 5 Station, in the middle profile of the landslide, from June to December of 2008, the depth of slip surface determined by TDR is -33.58 m, which is consistent with the geological condition of the borehole nearby. The deformation curve trend of the TDR and inclinometer is similar, and it is uniform with the deformation caused by the Three Gorges Reservoir 175 m experimental impoundment. Further, TDR can monitor the tiny deformation accurately. Therefore, TDR is applicable to monitor the Yuhuangge landslide deep deformation and reflect the deformation characteristics well. It is significant to promote the application of TDR in landslide monitoring. 展开更多
关键词 time domain reflectometry Yuhuangge landslide APPLICABILITY deformation monitoring fluctuation of reservoir level.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部