Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of re...Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of reservoir can lead to the fact that reservoir near wellbore is more vulnerable to the working fluid invasion,resulting in more serious formation damage.In order to quantitatively describe the reservoir formation damage in the construction of complex-structure well,taking the inclined well section as the research object,the coordinate transformation method and conformal transformation method are given according to the flow characteristics of reservoir near wellbore in anisotropic reservoir.Then the local skin factor in orthogonal plane of wellbore is deduced.Considering the un-even distribution of local skin factor along the wellbore,the oscillation decreasing model and empirical equation model of damage zone radius distribution along the wellbore direction are established and then the total skin factor model of the whole well is superimposed to realize the reservoir damage evaluation of complex-structure wells.Combining the skin factor model with the production model,the production of complex-structure wells can be predicted more accurately.The two field application cases show that the accuracy of the model can be more than 90%,which can also fully reflect the invasion characteristics of drilling and completion fluid in any well section of complex-structure wells in anisotropic reservoir,so as to further provide guidance for the scientific establish-ment of reservoir production system.展开更多
The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based...The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based on a set of organic geochemical experiments conducted on natural gas and associated condensate oil of the first member of the Funing Formation (E1f1) in well YCh5 and well data analysis, the oil-gas resources and reservoir formation model in the Zhujiadun gas reservoir in the Yancheng Sag, Subei Basin, were investigated. The results of this study are as follows. (1) The natural gas in the Zhujiadun gas reservoir is dry gas with high methane content, low heavy hydrocarbon content, and high maturity. The characteristics of carbon and hydrogen isotopes in the natural gas indicate that the natural gas is oil-cracked gas, which mainly originates from the source rocks of the Permian Qixia Formation. (2) The condensate oil from well YCh5 with a high degree of maturity has a high pristane/phytane ratio, low gamma-paraffin abundance, and low tricyclic terpene abundance, indicating a mixture of the Upper Paleozoic condensate oil and Cenozoic crude oil. The saturated and aromatic hydrocarbons have similar δ13C values to the Cenozoic continental crude oil. These features suggest two sources of condensate oil. (3) Oils generated from the source rocks of the Qixia Formation were cracked into highly mature gas after deep burial, which migrated along large faults into the sandstones of the E1f1 and K1t1 members. This type of reservoir was effectively preserved beneath the overlying mudstone cap rocks. Therefore, it can be inferred that a play fairway might occur in the eastern zone of the faults connected to the Paleozoic source rocks in the Yancheng Sag since this zone has similar petroleum geological conditions to well YCh5. Therefore, this zone is a favorable area for further exploration.展开更多
The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balanc...The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.展开更多
Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing ...Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing adjustment, reconstruction and destruction of later-stage multiple tectonic events. In this paper, this phenomenon is called the late-stage reservoir formation effect. The late-stage reservoir formation effect is a basic feature of oil and gas-forming reservoirs in complex superimposed basins, revealing not only multi-stage character, relevance and complexity of oil and gas- forming reservoirs in superimposed basins but also the importance of late-stage reservoir formation. Late-stage reservoir formation is not a basic feature of oil and gas forming reservoir in superimposed basins. Multi-stage reservoir formation only characterizes one aspect of oil and gas-forming reservoir in superimposed basins and does not represent fully the complexity of oil and gas-forming reservoir in superimposed basins. We suggest using "late-stage reservoir formation effect" to replace the "late-stage reservoir formation" concept to guide the exploration of complex reservoirs in superimposed basins. Under current geologic conditions, the late-stage reservoir formation effect is represented mainly by four basic forms: phase transformation, scale reconstruction, component variation and trap adjustment. The late-stage reservoir formation effect is produced by two kinds of geologic processes: first, the oil and gas retention function of various geologic thresholds (hydrocarbon expulsion threshold, hydrocarbon migration threshold, and hydrocarbon accumulating threshold) causes the actual time of oil and gas reservoir formation to be later than the time of generation of large amounts of hydrocarbon in a conventional sense, producing the late-stage reservoir formation effect; second, multiple types of tectonic events (continuously strong reconstruction, early-stage strong reconstruction, middle-stage strong reconstruction, late-stage strong reconstruction and long-term stable sedimentation) after oil and gas reservoir formation lead to adjustment, reconstruction and destruction of reservoirs formed earlier, and form new secondary hydrocarbon reservoirs due to the late-stage reservoir formation effect.展开更多
In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and d...In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and diagenetic evolution caused the Changxing Formation to form lithologic traps, with good reservoirs such as dissolved bioclastic dolostone and dissolved pore dolostone. The Changxing Formation gas reservoir is a pseudo-layered porous lithologic gas reservoir under pressure depletion drive, with high H2S and moderate CO2 contents. This paper predictes that the conducting system for the Changxing Formation gas reservoir is possibly composed of the pores and microfractures in the Changxing Formation reservoir, the top erosional surface of the Changxing Formation, as well as the micropores and microfractures in the underlying formations. The Changxing Formation reservoir has experienced 3 hydrocarbon charging stages. This paper suggests that diffusion is the major formation mechanism for this gas reservoir. In the Middle and Late Yanshanian, the Yuanba area entered the major gas charging stage. The gas migrated mainly through diffusion and with the assistance of seepage flow in small faults and microfractures from the source rocks and the other oil-bearing strata to the Changxing Formation carbonate reservoir rocks, forming lithologic gas pools. In the Himalayan Epoch, the lithologic traps were uplifted as a whole without strong modification or overlapping, and were favorable for gas preservation.展开更多
In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Sta...In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Static test models(filtration test model and pressure test model)were used to determine the effect of PPG on low permeable formations.This work used a strong preformed particle gel,Daqing(DQ) gel made by a Chinese company.The particle gel sizes were ranged from 30 to 120 mesh for this work.PPGs are sized in a millimeter or micrometer,which can absorb over a hundred times their weight in liquids.The gel strength was approximately 6500 Pa for a completely swollen PPG with 1 %(weight percentage) NaCl solution(brine).0.05 %,1 %,and 10 % NaCl solutions were used in experiments.Sandstone core permeability was measured before and after PPG treatments.The relationship between cumulative filtration volumes versus filtration times was determined.The results indicate that DQ gels of a particle size of 30–80 mesh did not damage the cores of a low permeability of 3–25 m D.The DQ gels of a smaller particle size ranging from 100 to 120 mesh damaged the core and a cake was formed on the core surface.The results also indicate that more damage occurred when a high load pressure(400 psi) was applied on the high permeability cores(290–310 m D).The penetration of the particle gelsinto the low permeable formations can be decreased by the best selection of gel types,particle sizes,and brine concentrations.展开更多
Sarvak formation is one of the important hydrocarbon reservoirs in the Zagros Basin that is one of the mid-Cretaceous carbonate units in Bangestan. This formation is located in the Kazhdomi Formation with the same slo...Sarvak formation is one of the important hydrocarbon reservoirs in the Zagros Basin that is one of the mid-Cretaceous carbonate units in Bangestan. This formation is located in the Kazhdomi Formation with the same slope. Geology, Kohmond field is located in the southeast of Bushehr and north and northwest of the Fars province. In this project, the geology, the tank and Petrophysics features were studied in the field with sedimentology;stratigraphy, Petrophysics, sedimentary environments and reservoir data analysis. According to studies, sedimentary environment of Sarvak in the Kohmond field is diagnosed as a ramp carbonate platform. Sarvak reservoir modeling in this field was done by using Petrelli software. The results indicate parts with high porosity, which are focused more in central and southeastern parts of the field and can contain large amounts of oil.展开更多
Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristic...Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.展开更多
So far, more than 150 marine oil-gas fields have been found onshore and offshore about 350. The marine source rocks are mainly Paleozoic and Mesozoic onshore whereas Tertiary offshore. Three genetic categories of oil-...So far, more than 150 marine oil-gas fields have been found onshore and offshore about 350. The marine source rocks are mainly Paleozoic and Mesozoic onshore whereas Tertiary offshore. Three genetic categories of oil-gas reservoirs have been defined for the marine reservoirs in China: primary reservoirs, secondary reservoirs and hydrocarbon-regeneration reservoirs. And three exploration prospects have also been suggested: (1) Primary reservoirs prospects, which are chiefly distributed in many Tertiary basins of the South China Sea (SCS), the Tertiary shelf basins of the East China Sea (ECS) and the Paleozoic of Tarim basin, Sichuan basin and Ordos basin. To explore large-middle-scale even giant oil-gas fields should chiefly be considered in this category reservoirs. These basins are the most hopeful areas to explore marine oil-gas fields in China, among which especially many Tertiary basins of the SCS should be strengthened to explore. (2) Secondary reservoirs prospects, which are mainly distributed in the Paleozoic and Mesozoic of the Tarim basin, Sichuan basin, Qiangtang basin and Chuxiong basin in western China, of which exploration potential is less than that of the primary reservoirs. (3) Hydrocarbon-regeneration reservoirs prospects, which are chiefly distributed in the Bohai Bay basin, North Jiangsu-South Yellow Sea basin, southern North China basin, Jianghan basin, South Poyang basin in eastern China and the Tarim basin in western China, of which source rocks are generally the Paleozoic. And the reservoirs formed by late-stage (always Cenozoic) secondary hydrocarbon generation of the Paleozoic source rocks should mainly be considered to explore, among which middle-small and small oil-gas fields are the chief exploration targets. As a result of higher thermal evolution of Paleozoic and Mesozoic source rocks, the marine reservoirs onshore are mainly gas fields, and so far marine oil fields have only been found in the Tarim basin. No other than establishing corresponding marine oil-gas exploration and development strategy and policy, sufficiently enhancing cognition to the particularity and complexity of China's marine petroleum geology, and applying new thoughts, new theories and new technologies, at the same time tackling some key technologies, it is possible to fast and effectually exploit and utilize the potential huge marine oil-gas resources of China.展开更多
The successful development of unconventional hydrocarbons has significantly increased global hydrocarbon resources, promoted the growth of global hydrocarbon production and made a great breakthrough in classical oil a...The successful development of unconventional hydrocarbons has significantly increased global hydrocarbon resources, promoted the growth of global hydrocarbon production and made a great breakthrough in classical oil and gas geology. The core mechanism of conventional hydrocarbon accumulation is the preservation of hydrocarbons by trap enrichment and buoyancy, while unconventional hydrocarbons are characterized by continuous accumulation and non-buoyancy accumulation. It is revealed that the key of formation mechanism of the unconventional reservoirs is the self-sealing of hydrocarbons driven by intermolecular forces. Based on the behavior of intermolecular forces and the corresponding self-sealing, the formation mechanisms of unconventional oil and gas can be classified into three categories:(1) thick oil and bitumen, which are dominated by large molecular viscous force and condensation force;(2) tight oil and gas, shale oil and gas and coal-bed methane, which are dominated by capillary forces and molecular adsorption;and(3) gas hydrate, which is dominated by intermolecular clathration. This study discusses in detail the characteristics, boundary conditions and geological examples of self-sealing of the five types of unconventional resources, and the basic principles and mathematical characterization of intermolecular forces. This research will deepen the understanding of formation mechanisms of unconventional hydrocarbons, improve the ability to predict and evaluate unconventional oil and gas resources, and promote the development and production techniques and potential production capacity of unconventional oil and gas.展开更多
Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of nat...Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation.展开更多
Based on the microscopic pore-throat characterization of typical continental tight reservoirs in China,such as sandstone of Cretaceous Qingshankou and Quantou formations in Songliao Basin,NE China sandy conglomerate o...Based on the microscopic pore-throat characterization of typical continental tight reservoirs in China,such as sandstone of Cretaceous Qingshankou and Quantou formations in Songliao Basin,NE China sandy conglomerate of Baikouquan Formation in Mahu area and hybrid rock of Lucaogou Formation in Jimusaer sag of Junggar Basin,NE China the theoretical lower limit,oil accumulation lower limit,effective flow lower limit and the upper limit of tight oil reservoirs were defined by water film thickness method,oil bearing occurrence method,oil testing productivity method and mechanical balance method,respectively.Cluster analysis method was used to compare the differences in pore-throat structure of different tight reservoirs,determine the grading criterion of tight reservoirs,and analyze its correlation with the limit of reservoir formation.The results show that the boundary between tight reservoir and conventional reservoir corresponds to the upper limit of physical properties,the boundary of classⅡand classⅢtight reservoirs corresponds to the lower limit of effective flow,the boundary of classⅢand classⅣtight reservoirs corresponds to the lower limit of reservoir forming,and the theoretical lower limit of tight reservoir corresponds to the boundary between tight reservoir and non-reservoir.Finally,the application results of the grading evaluation criterion show that the tight oil productivity is highly controlled by the type of tight reservoir,and classⅠand classⅡtight reservoirs are the favorable sections for high production of tight oil.展开更多
The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmax...The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmaxi shale gas in the Jiaoshiba and Youyang Blocks, the Lewis shale gas in the San Juan Basin. Further analysis reveals three static subsystems(hydrocarbon source rock, gas reservoirs and seal formations) and four dynamic subsystems(tectonic evolution, sedimentary sequence, diagenetic evolution and hydrocarbon-generation history) in shale-gas enrichment systems. Tectonic evolution drives the dynamic operation of the whole shale-gas enrichment system. The shale-gas enrichment modes controlled by tectonic evolution are classifiable into three groups and six subgroups. Group I modes are characterized by tectonically controlled hydrocarbon source rock, and include continuous in-situ biogenic shale gas(Ⅰ_1) and continuous in-situ thermogenic shale gas(Ⅰ_2). Group Ⅱ modes are characterized by tectonically controlled gas reservoirs, and include anticline-controlled reservoir enrichment(Ⅱ_1) and fracture-controlled reservoir enrichment(Ⅱ_2). Group Ⅲ modes possess tectonically controlled seal formations, and include faulted leakage enrichment(Ⅲ_1) and eroded residual enrichment(Ⅲ_2). In terms of quantity and exploitation potential, Ⅰ_1 and Ⅰ_2 are the best shale-gas enrichment modes, followed by Ⅱ_1 and Ⅱ_2. The least effective modes are Ⅲ_1 and Ⅲ_2. The categorization provides a different perspective for deep shale-gas exploration.展开更多
Because of the difference ofoil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the...Because of the difference ofoil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the basement fault, but in the footwall of the shallow detachment fault in the Nanbaxian pool. The oil and gas of the Nanbaxian pool came from the mature Jurassic hydrocarbon source rock of the Yibei depression located at the south of the Nanbaxian pool. Firstly, the oil and gas accumulated in the traps of the hanging wall of the basement fault by way of the unconformity and the basement faults, and turned into some primary deep pools; and then, the shallow detachment fault that formed in the later tectonic movement broke into the deep primary pools, which caused the oil and gas migration upwards along the basement faults and the shallow detachment faults and the evolvement into some secondary oil and gas pools later. The history of the Nanbaxian oil and gas accumulation can be summarized successively as the syndepositional upheaval controlled by faults; single hydrocarbon source rock; unconformities and faults as migration channels; buoyancy, overpressure and tectonic stress as dynamic forces; multistage migration and accumulation of oil and gas; and finally an overlapped double-floor pattern of oil and gas accumulation. The most important explorative targets in the north of the Qaidam Basin are traps connected with the primary pools in the footwall by shallow detachment faults.展开更多
CO2reservoirs are widely distributed within the Yingcheng Formation in the Songliao Basin, but the extreme horizontal heterogeneity of CO2content causes difficulties in the exploration and exploitation of methane. For...CO2reservoirs are widely distributed within the Yingcheng Formation in the Songliao Basin, but the extreme horizontal heterogeneity of CO2content causes difficulties in the exploration and exploitation of methane. Former studies have fully covered the lithology, structure, and distribution of the reservoirs high in CO2content, but few are reported about migration and accumulation of CO2. Using the East Changde Gas Field as an example, we studied the accumulation mechanisms of CO2 gas. Two original types of accumulation model are proposed in this study. The fault-controlled accumulation model refers to gas accumulation in the reservoir body that is cut by a basement fault(the West Xu Fault), allowing the hydrocarbon gas generated in the lower formation to migrate into the reservoir body through the fault, which results in a relatively lower CO2content. The volcanic conduit-controlled accumulation model refers to a reservoir body that is not cut by the basement fault, which prevents the hydrocarbon gas from being mixed in and leads to higher CO2contents. This conclusion provides useful theories for prediction of CO2distribution in similar basins and reservoirs.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52004297 and Grant No.51991361)China Postdoctoral Science Foundation(Grant No.BX20200384)。
文摘Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of reservoir can lead to the fact that reservoir near wellbore is more vulnerable to the working fluid invasion,resulting in more serious formation damage.In order to quantitatively describe the reservoir formation damage in the construction of complex-structure well,taking the inclined well section as the research object,the coordinate transformation method and conformal transformation method are given according to the flow characteristics of reservoir near wellbore in anisotropic reservoir.Then the local skin factor in orthogonal plane of wellbore is deduced.Considering the un-even distribution of local skin factor along the wellbore,the oscillation decreasing model and empirical equation model of damage zone radius distribution along the wellbore direction are established and then the total skin factor model of the whole well is superimposed to realize the reservoir damage evaluation of complex-structure wells.Combining the skin factor model with the production model,the production of complex-structure wells can be predicted more accurately.The two field application cases show that the accuracy of the model can be more than 90%,which can also fully reflect the invasion characteristics of drilling and completion fluid in any well section of complex-structure wells in anisotropic reservoir,so as to further provide guidance for the scientific establish-ment of reservoir production system.
基金funded by a project entitled Middle-Paleozoic Hydrocarbon Accumulation Conditions and Favorable Area Evaluation of the Subei-South Yellow Sea Basin (P21086-6), initiated by the Sinopec Oilfield Service Corporation.
文摘The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based on a set of organic geochemical experiments conducted on natural gas and associated condensate oil of the first member of the Funing Formation (E1f1) in well YCh5 and well data analysis, the oil-gas resources and reservoir formation model in the Zhujiadun gas reservoir in the Yancheng Sag, Subei Basin, were investigated. The results of this study are as follows. (1) The natural gas in the Zhujiadun gas reservoir is dry gas with high methane content, low heavy hydrocarbon content, and high maturity. The characteristics of carbon and hydrogen isotopes in the natural gas indicate that the natural gas is oil-cracked gas, which mainly originates from the source rocks of the Permian Qixia Formation. (2) The condensate oil from well YCh5 with a high degree of maturity has a high pristane/phytane ratio, low gamma-paraffin abundance, and low tricyclic terpene abundance, indicating a mixture of the Upper Paleozoic condensate oil and Cenozoic crude oil. The saturated and aromatic hydrocarbons have similar δ13C values to the Cenozoic continental crude oil. These features suggest two sources of condensate oil. (3) Oils generated from the source rocks of the Qixia Formation were cracked into highly mature gas after deep burial, which migrated along large faults into the sandstones of the E1f1 and K1t1 members. This type of reservoir was effectively preserved beneath the overlying mudstone cap rocks. Therefore, it can be inferred that a play fairway might occur in the eastern zone of the faults connected to the Paleozoic source rocks in the Yancheng Sag since this zone has similar petroleum geological conditions to well YCh5. Therefore, this zone is a favorable area for further exploration.
基金the Joint Fund of the National Natural Science Foundation of China under funding number of U19B6003-02-04the fund of A Theoretical Study of Marine Petroliferous System,Sichuan Basin,and the Science Foundation of China University of Petroleum,Beijing under funding number of 2462020BJRC005.
文摘The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.
基金State Key Basic Research "973" Program (2006CB202308) for funding this research
文摘Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing adjustment, reconstruction and destruction of later-stage multiple tectonic events. In this paper, this phenomenon is called the late-stage reservoir formation effect. The late-stage reservoir formation effect is a basic feature of oil and gas-forming reservoirs in complex superimposed basins, revealing not only multi-stage character, relevance and complexity of oil and gas- forming reservoirs in superimposed basins but also the importance of late-stage reservoir formation. Late-stage reservoir formation is not a basic feature of oil and gas forming reservoir in superimposed basins. Multi-stage reservoir formation only characterizes one aspect of oil and gas-forming reservoir in superimposed basins and does not represent fully the complexity of oil and gas-forming reservoir in superimposed basins. We suggest using "late-stage reservoir formation effect" to replace the "late-stage reservoir formation" concept to guide the exploration of complex reservoirs in superimposed basins. Under current geologic conditions, the late-stage reservoir formation effect is represented mainly by four basic forms: phase transformation, scale reconstruction, component variation and trap adjustment. The late-stage reservoir formation effect is produced by two kinds of geologic processes: first, the oil and gas retention function of various geologic thresholds (hydrocarbon expulsion threshold, hydrocarbon migration threshold, and hydrocarbon accumulating threshold) causes the actual time of oil and gas reservoir formation to be later than the time of generation of large amounts of hydrocarbon in a conventional sense, producing the late-stage reservoir formation effect; second, multiple types of tectonic events (continuously strong reconstruction, early-stage strong reconstruction, middle-stage strong reconstruction, late-stage strong reconstruction and long-term stable sedimentation) after oil and gas reservoir formation lead to adjustment, reconstruction and destruction of reservoirs formed earlier, and form new secondary hydrocarbon reservoirs due to the late-stage reservoir formation effect.
基金supported by the National Major Fundamental Research and Development project(No. 2005CB422100)the project of Southern Exploration Division Company,SINOPEC
文摘In a very gentle platform-margin paleogeographic environment, platform-margin reef flat facies carbonate reservoir rocks were developed in the Changxing Formation of Yuanba field. Later weak structural evolution and diagenetic evolution caused the Changxing Formation to form lithologic traps, with good reservoirs such as dissolved bioclastic dolostone and dissolved pore dolostone. The Changxing Formation gas reservoir is a pseudo-layered porous lithologic gas reservoir under pressure depletion drive, with high H2S and moderate CO2 contents. This paper predictes that the conducting system for the Changxing Formation gas reservoir is possibly composed of the pores and microfractures in the Changxing Formation reservoir, the top erosional surface of the Changxing Formation, as well as the micropores and microfractures in the underlying formations. The Changxing Formation reservoir has experienced 3 hydrocarbon charging stages. This paper suggests that diffusion is the major formation mechanism for this gas reservoir. In the Middle and Late Yanshanian, the Yuanba area entered the major gas charging stage. The gas migrated mainly through diffusion and with the assistance of seepage flow in small faults and microfractures from the source rocks and the other oil-bearing strata to the Changxing Formation carbonate reservoir rocks, forming lithologic gas pools. In the Himalayan Epoch, the lithologic traps were uplifted as a whole without strong modification or overlapping, and were favorable for gas preservation.
基金the Research Partnership to Secure Energy for America (RPSEA) for its financial support for this work
文摘In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Static test models(filtration test model and pressure test model)were used to determine the effect of PPG on low permeable formations.This work used a strong preformed particle gel,Daqing(DQ) gel made by a Chinese company.The particle gel sizes were ranged from 30 to 120 mesh for this work.PPGs are sized in a millimeter or micrometer,which can absorb over a hundred times their weight in liquids.The gel strength was approximately 6500 Pa for a completely swollen PPG with 1 %(weight percentage) NaCl solution(brine).0.05 %,1 %,and 10 % NaCl solutions were used in experiments.Sandstone core permeability was measured before and after PPG treatments.The relationship between cumulative filtration volumes versus filtration times was determined.The results indicate that DQ gels of a particle size of 30–80 mesh did not damage the cores of a low permeability of 3–25 m D.The DQ gels of a smaller particle size ranging from 100 to 120 mesh damaged the core and a cake was formed on the core surface.The results also indicate that more damage occurred when a high load pressure(400 psi) was applied on the high permeability cores(290–310 m D).The penetration of the particle gelsinto the low permeable formations can be decreased by the best selection of gel types,particle sizes,and brine concentrations.
文摘Sarvak formation is one of the important hydrocarbon reservoirs in the Zagros Basin that is one of the mid-Cretaceous carbonate units in Bangestan. This formation is located in the Kazhdomi Formation with the same slope. Geology, Kohmond field is located in the southeast of Bushehr and north and northwest of the Fars province. In this project, the geology, the tank and Petrophysics features were studied in the field with sedimentology;stratigraphy, Petrophysics, sedimentary environments and reservoir data analysis. According to studies, sedimentary environment of Sarvak in the Kohmond field is diagnosed as a ramp carbonate platform. Sarvak reservoir modeling in this field was done by using Petrelli software. The results indicate parts with high porosity, which are focused more in central and southeastern parts of the field and can contain large amounts of oil.
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)supported by Excellent Doctoral Dissertation Program of China University of Petroleum
文摘Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.
文摘So far, more than 150 marine oil-gas fields have been found onshore and offshore about 350. The marine source rocks are mainly Paleozoic and Mesozoic onshore whereas Tertiary offshore. Three genetic categories of oil-gas reservoirs have been defined for the marine reservoirs in China: primary reservoirs, secondary reservoirs and hydrocarbon-regeneration reservoirs. And three exploration prospects have also been suggested: (1) Primary reservoirs prospects, which are chiefly distributed in many Tertiary basins of the South China Sea (SCS), the Tertiary shelf basins of the East China Sea (ECS) and the Paleozoic of Tarim basin, Sichuan basin and Ordos basin. To explore large-middle-scale even giant oil-gas fields should chiefly be considered in this category reservoirs. These basins are the most hopeful areas to explore marine oil-gas fields in China, among which especially many Tertiary basins of the SCS should be strengthened to explore. (2) Secondary reservoirs prospects, which are mainly distributed in the Paleozoic and Mesozoic of the Tarim basin, Sichuan basin, Qiangtang basin and Chuxiong basin in western China, of which exploration potential is less than that of the primary reservoirs. (3) Hydrocarbon-regeneration reservoirs prospects, which are chiefly distributed in the Bohai Bay basin, North Jiangsu-South Yellow Sea basin, southern North China basin, Jianghan basin, South Poyang basin in eastern China and the Tarim basin in western China, of which source rocks are generally the Paleozoic. And the reservoirs formed by late-stage (always Cenozoic) secondary hydrocarbon generation of the Paleozoic source rocks should mainly be considered to explore, among which middle-small and small oil-gas fields are the chief exploration targets. As a result of higher thermal evolution of Paleozoic and Mesozoic source rocks, the marine reservoirs onshore are mainly gas fields, and so far marine oil fields have only been found in the Tarim basin. No other than establishing corresponding marine oil-gas exploration and development strategy and policy, sufficiently enhancing cognition to the particularity and complexity of China's marine petroleum geology, and applying new thoughts, new theories and new technologies, at the same time tackling some key technologies, it is possible to fast and effectually exploit and utilize the potential huge marine oil-gas resources of China.
基金Supported by the Gas-bearing Evolution Characteristics and Genetic Mechanism of Continental Shale Oil and Mobile Oil Evaluation Method(41872148)。
文摘The successful development of unconventional hydrocarbons has significantly increased global hydrocarbon resources, promoted the growth of global hydrocarbon production and made a great breakthrough in classical oil and gas geology. The core mechanism of conventional hydrocarbon accumulation is the preservation of hydrocarbons by trap enrichment and buoyancy, while unconventional hydrocarbons are characterized by continuous accumulation and non-buoyancy accumulation. It is revealed that the key of formation mechanism of the unconventional reservoirs is the self-sealing of hydrocarbons driven by intermolecular forces. Based on the behavior of intermolecular forces and the corresponding self-sealing, the formation mechanisms of unconventional oil and gas can be classified into three categories:(1) thick oil and bitumen, which are dominated by large molecular viscous force and condensation force;(2) tight oil and gas, shale oil and gas and coal-bed methane, which are dominated by capillary forces and molecular adsorption;and(3) gas hydrate, which is dominated by intermolecular clathration. This study discusses in detail the characteristics, boundary conditions and geological examples of self-sealing of the five types of unconventional resources, and the basic principles and mathematical characterization of intermolecular forces. This research will deepen the understanding of formation mechanisms of unconventional hydrocarbons, improve the ability to predict and evaluate unconventional oil and gas resources, and promote the development and production techniques and potential production capacity of unconventional oil and gas.
基金Supported by the National Science and Technology Major Project(2016ZX05003-002)Scientific Research Project of Petro China Company Limited(2016E-0601)
文摘Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation.
基金Supported by the National Science and Technology Major Project(2016ZX05046-001-005)National Natural Science Foundation of China(41922015)。
文摘Based on the microscopic pore-throat characterization of typical continental tight reservoirs in China,such as sandstone of Cretaceous Qingshankou and Quantou formations in Songliao Basin,NE China sandy conglomerate of Baikouquan Formation in Mahu area and hybrid rock of Lucaogou Formation in Jimusaer sag of Junggar Basin,NE China the theoretical lower limit,oil accumulation lower limit,effective flow lower limit and the upper limit of tight oil reservoirs were defined by water film thickness method,oil bearing occurrence method,oil testing productivity method and mechanical balance method,respectively.Cluster analysis method was used to compare the differences in pore-throat structure of different tight reservoirs,determine the grading criterion of tight reservoirs,and analyze its correlation with the limit of reservoir formation.The results show that the boundary between tight reservoir and conventional reservoir corresponds to the upper limit of physical properties,the boundary of classⅡand classⅢtight reservoirs corresponds to the lower limit of effective flow,the boundary of classⅢand classⅣtight reservoirs corresponds to the lower limit of reservoir forming,and the theoretical lower limit of tight reservoir corresponds to the boundary between tight reservoir and non-reservoir.Finally,the application results of the grading evaluation criterion show that the tight oil productivity is highly controlled by the type of tight reservoir,and classⅠand classⅡtight reservoirs are the favorable sections for high production of tight oil.
基金supported by the National Basic Research Program of China(grant No.2014CB239205)the sub-project of the National Science and Technology Major Project(grant No.2017ZX05035003)
文摘The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmaxi shale gas in the Jiaoshiba and Youyang Blocks, the Lewis shale gas in the San Juan Basin. Further analysis reveals three static subsystems(hydrocarbon source rock, gas reservoirs and seal formations) and four dynamic subsystems(tectonic evolution, sedimentary sequence, diagenetic evolution and hydrocarbon-generation history) in shale-gas enrichment systems. Tectonic evolution drives the dynamic operation of the whole shale-gas enrichment system. The shale-gas enrichment modes controlled by tectonic evolution are classifiable into three groups and six subgroups. Group I modes are characterized by tectonically controlled hydrocarbon source rock, and include continuous in-situ biogenic shale gas(Ⅰ_1) and continuous in-situ thermogenic shale gas(Ⅰ_2). Group Ⅱ modes are characterized by tectonically controlled gas reservoirs, and include anticline-controlled reservoir enrichment(Ⅱ_1) and fracture-controlled reservoir enrichment(Ⅱ_2). Group Ⅲ modes possess tectonically controlled seal formations, and include faulted leakage enrichment(Ⅲ_1) and eroded residual enrichment(Ⅲ_2). In terms of quantity and exploitation potential, Ⅰ_1 and Ⅰ_2 are the best shale-gas enrichment modes, followed by Ⅱ_1 and Ⅱ_2. The least effective modes are Ⅲ_1 and Ⅲ_2. The categorization provides a different perspective for deep shale-gas exploration.
文摘Because of the difference ofoil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the basement fault, but in the footwall of the shallow detachment fault in the Nanbaxian pool. The oil and gas of the Nanbaxian pool came from the mature Jurassic hydrocarbon source rock of the Yibei depression located at the south of the Nanbaxian pool. Firstly, the oil and gas accumulated in the traps of the hanging wall of the basement fault by way of the unconformity and the basement faults, and turned into some primary deep pools; and then, the shallow detachment fault that formed in the later tectonic movement broke into the deep primary pools, which caused the oil and gas migration upwards along the basement faults and the shallow detachment faults and the evolvement into some secondary oil and gas pools later. The history of the Nanbaxian oil and gas accumulation can be summarized successively as the syndepositional upheaval controlled by faults; single hydrocarbon source rock; unconformities and faults as migration channels; buoyancy, overpressure and tectonic stress as dynamic forces; multistage migration and accumulation of oil and gas; and finally an overlapped double-floor pattern of oil and gas accumulation. The most important explorative targets in the north of the Qaidam Basin are traps connected with the primary pools in the footwall by shallow detachment faults.
基金founded by the S&T development project ‘‘Key Factors Controlling Accumulation in Old Petroleum System (No. 2016A-0206)’’ by the China National Petroleum Corporation
文摘CO2reservoirs are widely distributed within the Yingcheng Formation in the Songliao Basin, but the extreme horizontal heterogeneity of CO2content causes difficulties in the exploration and exploitation of methane. Former studies have fully covered the lithology, structure, and distribution of the reservoirs high in CO2content, but few are reported about migration and accumulation of CO2. Using the East Changde Gas Field as an example, we studied the accumulation mechanisms of CO2 gas. Two original types of accumulation model are proposed in this study. The fault-controlled accumulation model refers to gas accumulation in the reservoir body that is cut by a basement fault(the West Xu Fault), allowing the hydrocarbon gas generated in the lower formation to migrate into the reservoir body through the fault, which results in a relatively lower CO2content. The volcanic conduit-controlled accumulation model refers to a reservoir body that is not cut by the basement fault, which prevents the hydrocarbon gas from being mixed in and leads to higher CO2contents. This conclusion provides useful theories for prediction of CO2distribution in similar basins and reservoirs.