Three-dimensional geological modeling of reservoirs is an essential tool to predict reservoir performance and improve the understanding of reservoir uniqueness in Es1 formation. The paper focuses on the use of petrel ...Three-dimensional geological modeling of reservoirs is an essential tool to predict reservoir performance and improve the understanding of reservoir uniqueness in Es1 formation. The paper focuses on the use of petrel software to build three-dimensional reservoir geological model which characterizes and assesses block Nv32 that located in the west of the Shenvsi oilfield in the south of Cangzhou city, Hebei province of China, and has an oil-bearing area of 1.4 km<sup>2</sup>. This study is depending on integration data from well logs of 22 wells which provided from geology, geophysics, and petrophysics to identify and provide precise depict of the subsurface internal structure and the reservoir heterogeneity. Input data was used to build the structural model, sedimentary facies model, petrophysical properties (porosity, permeability, saturation, and N/G model, and finally to determine the reservoir volume. The lithological facies were simulated using the assigned value method. Moreover, Petrophysical properties (Porosity, permeability, oil saturation and net to gross) were constructed for each zone using the Sequential Gaussian Simulation method to guide the distribution of petrophysical properties of Es1 formation, block Nv32. Statistical analysis of the porosity, permeability, oil saturation and N/G model present that the porosity occurrence distribution is mainly concern between 0.2% - 36.39% of block Nv32 with an average porosity value of 17.5%, permeability between 0.017 mD to 974.8 mD, having an average permeability of 59.44 mD, oil saturation between 0.00 to 0.95 having an average value of 0.22, and N/G is mainly concentrated between 0.01 to 1.00 within an average value of 0.61. This research has indicated the reliability of the three-dimensional model technique as a suitable tool to provide a sufficient understanding of petrophysical distribution. The south-western and north-western indicate that oilfield is very promising an exploratory well should be drilled to find out the thickness and size of the reservoir.展开更多
Dynamic models of the seismic,geological,and flow characteristics of a reservoir are the main tool used to evaluate the potential of drilling new infill wells.Static geological models are mainly based on borehole data...Dynamic models of the seismic,geological,and flow characteristics of a reservoir are the main tool used to evaluate the potential of drilling new infill wells.Static geological models are mainly based on borehole data combined with dynamic analyses of production dynamics.They are used to determine the redevelopment of and adjustments to new drilling locations;however,such models rarely incorporate seismic data.Consequently,it is difficult to control the changes in geological models between wells,which results in the configuration of well positions and predicted results being less than ideal.To improve the development of adjusted areas in terms of their remaining oil contents,we developed a new integrated analysis that combines static sediment modelling,including microfacies analysis(among other reservoir and seismic properties),with production behaviours.Here,we illustrate this new process by(1)establishing favourable areas for static geological analysis;(2)studying well recompletion potential and the condition of non-producing wells;(3)conducting interwell analyses with seismic and sedimentary data;(4)identifying potential sites constrained by seismic and geological studies,as well as initial oilfield production;(5)providing suggestions in a new well development plan.展开更多
In the phase of field evaluation, the changing of interwell reservoir may be out of control if the geological model was built only on well data due to few existing wells. The uncertainty of the interwell reservoir int...In the phase of field evaluation, the changing of interwell reservoir may be out of control if the geological model was built only on well data due to few existing wells. The uncertainty of the interwell reservoir interpolation based only on well data can be decreased by comprehensive utilization of geological, logging and seismic data, especially by using highly relative seismic properties from 3D seismic data adjusted by well point data to restrict interpolation of geological properties. A 3D-geological model which takes the sand body as the direct modeling object was built through stacking the structure, reservoir and water/oil/gas properties together in 3D space.展开更多
This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reserv...This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reservoir) and 8 groups, then summarizes the common feature and founding discipline of the subtle trap and finds 4 accumulating modes including steep slope mode, depression mode, center anticline mode and gentle slope mode. Its main exploration methods are explicated from the viewpoint of reservoir geological modeling, description of recognizing traps and comprehensive evaluation of reservoir and so on.展开更多
The Yangbajain Geothermal Field in Tibet is located in the fault subsidence basin of the central Yadong-Gulu Rift Valley.The spatial distribution of the field is controlled by mountain-front fault zones on the northwe...The Yangbajain Geothermal Field in Tibet is located in the fault subsidence basin of the central Yadong-Gulu Rift Valley.The spatial distribution of the field is controlled by mountain-front fault zones on the northwestern and southeastern sides of the basin.Geothermal power has been generated in Yangbajain for more than 40 years.However,owing to the lack of threedimensional(3D) geophysical exploration data,key geological issues related to the partial melt body of the Yangbajain Geothermal Field,such as its location,burial depth,and geometric form,as well as the ascending channel of the geothermal fluid,have for a long time been controversial.In this study,3D inversion was performed using measured geo-electromagnetic total impedance tensor data from 47 survey points.The extracted horizontal sections at different depths and profiles,and at different lines,reflect the 3D electrical structure model of the geothermal field in the study area.Subsequently,three findings were obtained.First,the partial melt body,located below the China-Nepal Highway extending along the northeast direction,is the heat source of the Yangbajain Geothermal Field.The burial depth range of the molten body was determined to range between approximately 6.2 and 14 km.Moreover,the geothermal fluid ascended a horn-shaped circulation channel with an up-facing opening,located in the northern section of the sulfur ditch area.The study results revealed that deep rock fissures(>2 km) were not well developed and had poor permeability.In addition,no layered heat reservoirs with high water richness were observed in the northern part of the study area.However,the application of enhanced geothermal system(EGS) technology in the northern region would be essential to improving the power generation capacity of the Yangbajain Geothermal Field.In addition,the study found no deep high-temperature heat storage areas in the southern region of the study area.展开更多
文摘Three-dimensional geological modeling of reservoirs is an essential tool to predict reservoir performance and improve the understanding of reservoir uniqueness in Es1 formation. The paper focuses on the use of petrel software to build three-dimensional reservoir geological model which characterizes and assesses block Nv32 that located in the west of the Shenvsi oilfield in the south of Cangzhou city, Hebei province of China, and has an oil-bearing area of 1.4 km<sup>2</sup>. This study is depending on integration data from well logs of 22 wells which provided from geology, geophysics, and petrophysics to identify and provide precise depict of the subsurface internal structure and the reservoir heterogeneity. Input data was used to build the structural model, sedimentary facies model, petrophysical properties (porosity, permeability, saturation, and N/G model, and finally to determine the reservoir volume. The lithological facies were simulated using the assigned value method. Moreover, Petrophysical properties (Porosity, permeability, oil saturation and net to gross) were constructed for each zone using the Sequential Gaussian Simulation method to guide the distribution of petrophysical properties of Es1 formation, block Nv32. Statistical analysis of the porosity, permeability, oil saturation and N/G model present that the porosity occurrence distribution is mainly concern between 0.2% - 36.39% of block Nv32 with an average porosity value of 17.5%, permeability between 0.017 mD to 974.8 mD, having an average permeability of 59.44 mD, oil saturation between 0.00 to 0.95 having an average value of 0.22, and N/G is mainly concentrated between 0.01 to 1.00 within an average value of 0.61. This research has indicated the reliability of the three-dimensional model technique as a suitable tool to provide a sufficient understanding of petrophysical distribution. The south-western and north-western indicate that oilfield is very promising an exploratory well should be drilled to find out the thickness and size of the reservoir.
文摘Dynamic models of the seismic,geological,and flow characteristics of a reservoir are the main tool used to evaluate the potential of drilling new infill wells.Static geological models are mainly based on borehole data combined with dynamic analyses of production dynamics.They are used to determine the redevelopment of and adjustments to new drilling locations;however,such models rarely incorporate seismic data.Consequently,it is difficult to control the changes in geological models between wells,which results in the configuration of well positions and predicted results being less than ideal.To improve the development of adjusted areas in terms of their remaining oil contents,we developed a new integrated analysis that combines static sediment modelling,including microfacies analysis(among other reservoir and seismic properties),with production behaviours.Here,we illustrate this new process by(1)establishing favourable areas for static geological analysis;(2)studying well recompletion potential and the condition of non-producing wells;(3)conducting interwell analyses with seismic and sedimentary data;(4)identifying potential sites constrained by seismic and geological studies,as well as initial oilfield production;(5)providing suggestions in a new well development plan.
文摘In the phase of field evaluation, the changing of interwell reservoir may be out of control if the geological model was built only on well data due to few existing wells. The uncertainty of the interwell reservoir interpolation based only on well data can be decreased by comprehensive utilization of geological, logging and seismic data, especially by using highly relative seismic properties from 3D seismic data adjusted by well point data to restrict interpolation of geological properties. A 3D-geological model which takes the sand body as the direct modeling object was built through stacking the structure, reservoir and water/oil/gas properties together in 3D space.
文摘This article analyses the procedure of exploration of the Tertiary subtle trap in Jiyang depression and divides the Tertiary subtle trap into 3 types (lithologic reservoir, stratigraphic reservoir and fractured reservoir) and 8 groups, then summarizes the common feature and founding discipline of the subtle trap and finds 4 accumulating modes including steep slope mode, depression mode, center anticline mode and gentle slope mode. Its main exploration methods are explicated from the viewpoint of reservoir geological modeling, description of recognizing traps and comprehensive evaluation of reservoir and so on.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0804)the National Natural Science Foundation of China (Grant No. U21A2015)。
文摘The Yangbajain Geothermal Field in Tibet is located in the fault subsidence basin of the central Yadong-Gulu Rift Valley.The spatial distribution of the field is controlled by mountain-front fault zones on the northwestern and southeastern sides of the basin.Geothermal power has been generated in Yangbajain for more than 40 years.However,owing to the lack of threedimensional(3D) geophysical exploration data,key geological issues related to the partial melt body of the Yangbajain Geothermal Field,such as its location,burial depth,and geometric form,as well as the ascending channel of the geothermal fluid,have for a long time been controversial.In this study,3D inversion was performed using measured geo-electromagnetic total impedance tensor data from 47 survey points.The extracted horizontal sections at different depths and profiles,and at different lines,reflect the 3D electrical structure model of the geothermal field in the study area.Subsequently,three findings were obtained.First,the partial melt body,located below the China-Nepal Highway extending along the northeast direction,is the heat source of the Yangbajain Geothermal Field.The burial depth range of the molten body was determined to range between approximately 6.2 and 14 km.Moreover,the geothermal fluid ascended a horn-shaped circulation channel with an up-facing opening,located in the northern section of the sulfur ditch area.The study results revealed that deep rock fissures(>2 km) were not well developed and had poor permeability.In addition,no layered heat reservoirs with high water richness were observed in the northern part of the study area.However,the application of enhanced geothermal system(EGS) technology in the northern region would be essential to improving the power generation capacity of the Yangbajain Geothermal Field.In addition,the study found no deep high-temperature heat storage areas in the southern region of the study area.