Lake ice thickness changes with regional hydrometeorology and is closely associated with global climate change.We tested the detection of ice thickness using ground penetrating radar(GPR)in the Hongqipao reservoir.I...Lake ice thickness changes with regional hydrometeorology and is closely associated with global climate change.We tested the detection of ice thickness using ground penetrating radar(GPR)in the Hongqipao reservoir.Ice crystals,gas bubbles,ice density and ice thickness were also determined by concurrently drilling for validation.During the tests the gas bubble content was high in the upper and low in the bottom,ice density varied with the bubble content,and the ice thickness was not homogeneous.By comparisons between radar detected and in-situ measured ice thicknesses with theoretical analyses of the influence of gas bubble content on the dielectric constant,a three-layer model with snow, granular ice,and columnar ice was established and the transmission speed of radar wave within the ice was determined.Experience reveals that the equivalent dielectric constant can be used to evaluate the wave speed and the values at 1/3 ice cover depth can be used as equivalent values.Besides,the difference between the theoretical transmission time and the real detection time induced by large gas bubbles increases nonlinearly with the theoretical transmission time or ice thickness.展开更多
A width-averaged 2-D numerical model for simulating vertical distributions of flow and water temperature in reservoirs with an ice cover is developed. In this model, the 2-D flow and water temperature distributions ar...A width-averaged 2-D numerical model for simulating vertical distributions of flow and water temperature in reservoirs with an ice cover is developed. In this model, the 2-D flow and water temperature distributions are solved by the finite volume method with the k-? turbulent model. The heat conduction in the ice cover is modeled by the vertical heat transfer and the heat exchanges through the air-ice and ice-water interfaces. The model is applied to a 153 km long reservoir in Songhua River and the simulated results are in a good agreement with the field data of both the vertical water temperature and the ice thickness. The simulated results show that the ice cover thickness in the reservoir is not uniform, the maximum thickness appears in the middle reach, the outflow temperature has an obvious variation as compared with the natural temperature, and a buoyant flow occurs in the reservoir surface at the freeze-up and break-up periods. The model can effectively simulate the water temperature and the ice conditions of large reservoirs in cold regions.展开更多
基金supported by the National Natural Science Foundation of China(Grant No50879008,40930848)the Open Fund of State Key Laboratory of Frozen Soil Engineering(Grant No SKLFSE200904)
文摘Lake ice thickness changes with regional hydrometeorology and is closely associated with global climate change.We tested the detection of ice thickness using ground penetrating radar(GPR)in the Hongqipao reservoir.Ice crystals,gas bubbles,ice density and ice thickness were also determined by concurrently drilling for validation.During the tests the gas bubble content was high in the upper and low in the bottom,ice density varied with the bubble content,and the ice thickness was not homogeneous.By comparisons between radar detected and in-situ measured ice thicknesses with theoretical analyses of the influence of gas bubble content on the dielectric constant,a three-layer model with snow, granular ice,and columnar ice was established and the transmission speed of radar wave within the ice was determined.Experience reveals that the equivalent dielectric constant can be used to evaluate the wave speed and the values at 1/3 ice cover depth can be used as equivalent values.Besides,the difference between the theoretical transmission time and the real detection time induced by large gas bubbles increases nonlinearly with the theoretical transmission time or ice thickness.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91547211,51309169 and 51179112)
文摘A width-averaged 2-D numerical model for simulating vertical distributions of flow and water temperature in reservoirs with an ice cover is developed. In this model, the 2-D flow and water temperature distributions are solved by the finite volume method with the k-? turbulent model. The heat conduction in the ice cover is modeled by the vertical heat transfer and the heat exchanges through the air-ice and ice-water interfaces. The model is applied to a 153 km long reservoir in Songhua River and the simulated results are in a good agreement with the field data of both the vertical water temperature and the ice thickness. The simulated results show that the ice cover thickness in the reservoir is not uniform, the maximum thickness appears in the middle reach, the outflow temperature has an obvious variation as compared with the natural temperature, and a buoyant flow occurs in the reservoir surface at the freeze-up and break-up periods. The model can effectively simulate the water temperature and the ice conditions of large reservoirs in cold regions.