This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspi...This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).展开更多
Based on core, thin-section, scanning electron microscopy(SEM) and well logging data, the characteristics of the parametamorphic rock reservoirs in the Pingxi area were analyzed by means of whole rock X-ray diffractio...Based on core, thin-section, scanning electron microscopy(SEM) and well logging data, the characteristics of the parametamorphic rock reservoirs in the Pingxi area were analyzed by means of whole rock X-ray diffraction and micron CT scanning. The parametamorphic rock reservoirs mainly had three types of rocks: slate, crystalline limestone and calc-schist; the original rocks were Ordovician-Silurian marine clastic and carbonate rocks. The three types of parametamorphic rock reservoirs developed three types and six sub-types of reservoir space. The first type of reservoir space was fractures, including structural, weathered and dissolution fractures; the second type was dissolved porosities, including dissolved pores and caves; the third type was nano-sized intercrystalline porosities. The three types of parametamorphic rock reservoirs were different widely in the quantity, volume and radius of pore-throats, and were strongly affected by the type and development degree of fractures. The parametamorphic rock reservoirs were formed by metamorphism, weathering, structural fragmentation and dissolution. Metamorphism reformed the parametamorphic rock reservoirs significantly, breaking the traditional constraint of finding weathering crust at top. The parametamorphic rock reservoirs experienced five formation stages, and their distribution was controlled by rock type, metamorphic degree, ancient geomorphology, and weathering intensity.展开更多
Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and ce...Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types are characterized by a compacted fabric and cemented framework. But distribution and dominance of diagenetic products in each of them depend on primary depositional composition and texture. The results show that reservoir rock typing based on three aspects of reservoir sandstones (depositional properties, diagenetic features and petrophysical characteristics) is a suitable technique for depiction of reservoir heterogeneity, recognition of reservoir units and identifying factors controlling reservoir quality of tight sandstones. This methodology can be used for the other tight reservoirs.展开更多
To estimate the volume of oil and gas in the hydrocarbon reservoirs, the rock-typing must be considered. The volume and type of available space in the reservoir rocks (porosity) and the ease of hydrocarbons flow (perm...To estimate the volume of oil and gas in the hydrocarbon reservoirs, the rock-typing must be considered. The volume and type of available space in the reservoir rocks (porosity) and the ease of hydrocarbons flow (permeability) are important in the classification of rock-types. In the field study, touching-vug Porosities (intergranular, intercrystalline and brecciate) increase the total porosity and form high quality rock-types, on the other side, separated-vug porosities (such as moldic, intraparticle and vuggy) increase the total porosity but do not play a large role in the production of hydrocarbon. In this paper, based on the SCAL data (Special Core Analysis) and according to amount of irreducible water saturation (Swir) and capillary pressure, the reservoir rocks are divided into 4 classes including Reservoir Rock-Types 1 to Reservoir Rock-Types 4 (RRTs-1 to RRTs-4). By study of the prepared thin sections, we investigated the role of porosity in the rock-typing. Among the rock-types, category 1 is the best type-reservoir and category 4 is non-reservoir. Probably, the latest diagenetic process determines the quality rocks, not sedimentary environments.展开更多
In this study, a sandstone interval of the lower Cretaceous successions in SW Iran is analyzed regarding the effects of late diagenesis on the alteration of primary reservoir quality and pore system. Petrological and ...In this study, a sandstone interval of the lower Cretaceous successions in SW Iran is analyzed regarding the effects of late diagenesis on the alteration of primary reservoir quality and pore system. Petrological and geochemical analyses indicate dominant quartz mineralogy(quartz arenite) deposited in distributary channel and mouth bar environments which is embedded in delta front to prodelta argillaceous sediments. Rather than mineralogy and some remaining primary(intergranular)porosity, several late(burial) diagenetic processes including multi-phase carbonate cementation, chlorite cementation, and chemical compaction, affected the reservoir quality. Most of the diagenetic processes had a decreasing effect on the primary reservoir quality. All recognized diagenetic features are related to burial diagenesis of the surrounding open marine shales(clay mineral transformation) and expelled diagenetic fluids.展开更多
In these years,the Upper Jurassic andesitic volcanic reservoirs in Erlian basin,the Lower Cretaceous rhyolitic volcanic reservoirs in Songliao Basin,the Cretaceous rhyolitic,and the Paleogene basaltic and trachytic vo...In these years,the Upper Jurassic andesitic volcanic reservoirs in Erlian basin,the Lower Cretaceous rhyolitic volcanic reservoirs in Songliao Basin,the Cretaceous rhyolitic,and the Paleogene basaltic and trachytic volcanic reservoirs in Bohai Bay Basin,and the basaltic volcanic reservoirs in Subei basin were discovered.With more and more volcanic oil and gas fields being discovered and developed,the volcanic rocks demonstrate a great petroleum potential in eastern basins of China.Five volcanic facies were identified in these basins,including volcanic conduit facies,explosive facies,effusive facies。展开更多
The late Jurassic Arab Formation, a significant carbonate-evaporite reservoir rock in the Persian Gulf, is characterized by frequent grainstone facies. For rock type identification and reservoir characterization, core...The late Jurassic Arab Formation, a significant carbonate-evaporite reservoir rock in the Persian Gulf, is characterized by frequent grainstone facies. For rock type identification and reservoir characterization, core description, petrographic studies and pore system evaluation are integrated for Balal oil field in the Persian Gulf. The grainstone facies are developed into three shoal subenvironments on a carbonate ramp platform: leeward, central and seaward. Compaction, dissolution, cementation, anhydrite mineralization and dolomitization are the main diagenetic processes affecting the depositional pore system. Considering depositional and diagenetic features and pore types, the grainstones are classified into six rock types (RT 1 to RT6). Rock types 1, 2 and 5 have large pore throat sizes with inter- granular and touching vug pore types. In rock type 3, moldic pores lead to high porosity and low permeability. Rock types 4 and 6 are cemented by anhydrite, calcite and dolomite. Generally, RTs 1, 2, 3 and 5 are related to late Transgressive systems tract (TST) and early Highstand systems tracts (HST) and show fair to good reservoir quality. In contrast, RTs 4 and 6 of late HST system tract show lower poroperm values, due to evaporite mineralization. Characterization of the grainstone facies provides a comprehensive understanding of the reservoir zones of the Arab Formation.展开更多
基金supported by the National Major Science and Technology Project (No.2016ZX05030002)
文摘This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).
基金Supported by the China National Science and Technology Major Project(2017ZX05001-002)
文摘Based on core, thin-section, scanning electron microscopy(SEM) and well logging data, the characteristics of the parametamorphic rock reservoirs in the Pingxi area were analyzed by means of whole rock X-ray diffraction and micron CT scanning. The parametamorphic rock reservoirs mainly had three types of rocks: slate, crystalline limestone and calc-schist; the original rocks were Ordovician-Silurian marine clastic and carbonate rocks. The three types of parametamorphic rock reservoirs developed three types and six sub-types of reservoir space. The first type of reservoir space was fractures, including structural, weathered and dissolution fractures; the second type was dissolved porosities, including dissolved pores and caves; the third type was nano-sized intercrystalline porosities. The three types of parametamorphic rock reservoirs were different widely in the quantity, volume and radius of pore-throats, and were strongly affected by the type and development degree of fractures. The parametamorphic rock reservoirs were formed by metamorphism, weathering, structural fragmentation and dissolution. Metamorphism reformed the parametamorphic rock reservoirs significantly, breaking the traditional constraint of finding weathering crust at top. The parametamorphic rock reservoirs experienced five formation stages, and their distribution was controlled by rock type, metamorphic degree, ancient geomorphology, and weathering intensity.
文摘Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types are characterized by a compacted fabric and cemented framework. But distribution and dominance of diagenetic products in each of them depend on primary depositional composition and texture. The results show that reservoir rock typing based on three aspects of reservoir sandstones (depositional properties, diagenetic features and petrophysical characteristics) is a suitable technique for depiction of reservoir heterogeneity, recognition of reservoir units and identifying factors controlling reservoir quality of tight sandstones. This methodology can be used for the other tight reservoirs.
文摘To estimate the volume of oil and gas in the hydrocarbon reservoirs, the rock-typing must be considered. The volume and type of available space in the reservoir rocks (porosity) and the ease of hydrocarbons flow (permeability) are important in the classification of rock-types. In the field study, touching-vug Porosities (intergranular, intercrystalline and brecciate) increase the total porosity and form high quality rock-types, on the other side, separated-vug porosities (such as moldic, intraparticle and vuggy) increase the total porosity but do not play a large role in the production of hydrocarbon. In this paper, based on the SCAL data (Special Core Analysis) and according to amount of irreducible water saturation (Swir) and capillary pressure, the reservoir rocks are divided into 4 classes including Reservoir Rock-Types 1 to Reservoir Rock-Types 4 (RRTs-1 to RRTs-4). By study of the prepared thin sections, we investigated the role of porosity in the rock-typing. Among the rock-types, category 1 is the best type-reservoir and category 4 is non-reservoir. Probably, the latest diagenetic process determines the quality rocks, not sedimentary environments.
基金The NIOC is thanked for data preparation and sponsorship
文摘In this study, a sandstone interval of the lower Cretaceous successions in SW Iran is analyzed regarding the effects of late diagenesis on the alteration of primary reservoir quality and pore system. Petrological and geochemical analyses indicate dominant quartz mineralogy(quartz arenite) deposited in distributary channel and mouth bar environments which is embedded in delta front to prodelta argillaceous sediments. Rather than mineralogy and some remaining primary(intergranular)porosity, several late(burial) diagenetic processes including multi-phase carbonate cementation, chlorite cementation, and chemical compaction, affected the reservoir quality. Most of the diagenetic processes had a decreasing effect on the primary reservoir quality. All recognized diagenetic features are related to burial diagenesis of the surrounding open marine shales(clay mineral transformation) and expelled diagenetic fluids.
文摘In these years,the Upper Jurassic andesitic volcanic reservoirs in Erlian basin,the Lower Cretaceous rhyolitic volcanic reservoirs in Songliao Basin,the Cretaceous rhyolitic,and the Paleogene basaltic and trachytic volcanic reservoirs in Bohai Bay Basin,and the basaltic volcanic reservoirs in Subei basin were discovered.With more and more volcanic oil and gas fields being discovered and developed,the volcanic rocks demonstrate a great petroleum potential in eastern basins of China.Five volcanic facies were identified in these basins,including volcanic conduit facies,explosive facies,effusive facies。
基金the Research Institute of Petroleum Industry (RIPI),Tehran,for sponsorship
文摘The late Jurassic Arab Formation, a significant carbonate-evaporite reservoir rock in the Persian Gulf, is characterized by frequent grainstone facies. For rock type identification and reservoir characterization, core description, petrographic studies and pore system evaluation are integrated for Balal oil field in the Persian Gulf. The grainstone facies are developed into three shoal subenvironments on a carbonate ramp platform: leeward, central and seaward. Compaction, dissolution, cementation, anhydrite mineralization and dolomitization are the main diagenetic processes affecting the depositional pore system. Considering depositional and diagenetic features and pore types, the grainstones are classified into six rock types (RT 1 to RT6). Rock types 1, 2 and 5 have large pore throat sizes with inter- granular and touching vug pore types. In rock type 3, moldic pores lead to high porosity and low permeability. Rock types 4 and 6 are cemented by anhydrite, calcite and dolomite. Generally, RTs 1, 2, 3 and 5 are related to late Transgressive systems tract (TST) and early Highstand systems tracts (HST) and show fair to good reservoir quality. In contrast, RTs 4 and 6 of late HST system tract show lower poroperm values, due to evaporite mineralization. Characterization of the grainstone facies provides a comprehensive understanding of the reservoir zones of the Arab Formation.