期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modes of Shale-Gas Enrichment Controlled by Tectonic Evolution 被引量:4
1
作者 LI Chaochun OU Chenghua 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1934-1947,共14页
The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmax... The typical characteristics of shale gas and the enrichment differences show that some shale gases are insufficiently explained by the existing continuous enrichment mode. These shale gases include the Wufeng–Longmaxi shale gas in the Jiaoshiba and Youyang Blocks, the Lewis shale gas in the San Juan Basin. Further analysis reveals three static subsystems(hydrocarbon source rock, gas reservoirs and seal formations) and four dynamic subsystems(tectonic evolution, sedimentary sequence, diagenetic evolution and hydrocarbon-generation history) in shale-gas enrichment systems. Tectonic evolution drives the dynamic operation of the whole shale-gas enrichment system. The shale-gas enrichment modes controlled by tectonic evolution are classifiable into three groups and six subgroups. Group I modes are characterized by tectonically controlled hydrocarbon source rock, and include continuous in-situ biogenic shale gas(Ⅰ_1) and continuous in-situ thermogenic shale gas(Ⅰ_2). Group Ⅱ modes are characterized by tectonically controlled gas reservoirs, and include anticline-controlled reservoir enrichment(Ⅱ_1) and fracture-controlled reservoir enrichment(Ⅱ_2). Group Ⅲ modes possess tectonically controlled seal formations, and include faulted leakage enrichment(Ⅲ_1) and eroded residual enrichment(Ⅲ_2). In terms of quantity and exploitation potential, Ⅰ_1 and Ⅰ_2 are the best shale-gas enrichment modes, followed by Ⅱ_1 and Ⅱ_2. The least effective modes are Ⅲ_1 and Ⅲ_2. The categorization provides a different perspective for deep shale-gas exploration. 展开更多
关键词 shale gas enrichment mode tectonic evolution hydrocarbon source gas reservoir seal formation
下载PDF
Theoretical analysis of ground displacements induced by deep fluid injection based on fully-coupled poroelastic simulation
2
作者 Guoyan Jiang 《Geodesy and Geodynamics》 CSCD 2021年第3期197-210,共14页
Observations of surface displacements are expected to aid in geomechanical analyses of injectioninduced seismicity.However,the controlling factors of the displacement magnitude remain poorly understood except the elas... Observations of surface displacements are expected to aid in geomechanical analyses of injectioninduced seismicity.However,the controlling factors of the displacement magnitude remain poorly understood except the elastic modulus of the fluid-bearing reservoir.Here,an experiment scheme of numerical simulation based on fully-coupled poroelasticity is designed to investigate the displacements induced by deep underground fluid injection.According to the sealing ability of deep reservoirs,the numerical experiments are classified into two scenarios:injection into open and sealed reservoirs.Potential effects from both geological and operational parameters are considered during the experiments,which include the hydromechanical properties,the reservoir geometry,injection rates and volumes.Experimental results reveal that in addition to the reservoir depth and Young’s modulus,the porosity also has significant influences on the surface displacements.Geodetic modeling of injection-induced displacements should include the parameter of reservoir porosity.When the reservoir is characterized by a good sealing ability,fluid injection is prone to induce larger horizontal displacements than vertical uplifts.Most of injection activities including hydraulic fracturing can probably induce detectable surface displacements.Geodetic surveying,especially using Global Navigation Satellite System(GNSS)with both horizontal and vertical observations,should become an essential monitoring task for anthropogenic fluid injection/production activities,which is conducive to assess and mitigate some geohazards including earthquakes. 展开更多
关键词 Injection-induced deformation Open and sealed reservoirs Geological and operational parameters Poroelastic simulation Geodetic monitoring
下载PDF
Light propagation in the micro-size capillary injected by high temperature liquid
3
作者 李艳军 李士阳 肖海 《Optoelectronics Letters》 EI 2016年第6期405-408,共4页
The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperatur... The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber(SMF) connected with the optical carrier based microwave interferometry(OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary. 展开更多
关键词 capillary pumping pumped reservoir interferometry microwave injected connected sealed liquids
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部