The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the L...The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations.展开更多
Based on the data from a special project titled China's Offshore Marine Integrated Investigation and Evaluation as well as Regional Ocean Modeling Systems(ROMS)diagnostic numerical model,we studied the influence o...Based on the data from a special project titled China's Offshore Marine Integrated Investigation and Evaluation as well as Regional Ocean Modeling Systems(ROMS)diagnostic numerical model,we studied the influence of high wind processes on the circulation and water exchange between the Bohai and Yellow Seas(BYS)in winter.The results show that the vertical structure of the Yellow Sea Warm Current(YSWC)is relatively uniform under condition of high winds,showing obvious barotropic features.However,this flow is not a stable mean flow,showing strong paroxysmal and reciprocating characteristics.A comparison of the changes in sea level suggests that the intensity of the northwards upwind flow is consistent with the abnormal fluctuations in the sea level.It indicates that the upwind flow is closely related to the water exchange between the BYS.The impact of high wind processes on the water exchange between the BYS is enormous.It can make the flux through the Bohai Strait,as well as that through the mouth of each constituent bay(i.e.,Liaodong Bay,Bohai Bay,and Laizhou Bay)far greater than usual,resulting in a significant increase in the water exchange rate.The exchange capacity,which is about 8%of the total volume of the Bohai Sea,can be completed in a few days.Therefore,the water exchange of the Bohai Sea may be completed by only a few occasional high wind processes in winter.展开更多
A model has been constructed to study water flow in a single clay crack, and a new concept of the critical rise rate of water level in the crack has been put forward. When the water level rises faster than this critic...A model has been constructed to study water flow in a single clay crack, and a new concept of the critical rise rate of water level in the crack has been put forward. When the water level rises faster than this critical rate, the flow in a crack will increase, and vice versa. The flow in a crack is not in proportion to the water level. The maximium water flow in clay is 30-40 times smaller than that in a rock fissure under the same condition. In the process of water discharge, the flow in a crack will lessen gradually, and the crack will grow narrower by 3.0-4.0cm, with its depth reducing by over 50%.展开更多
基金financed by the National Natural Science Foundation of China(Grant Nos.41472274,41672300)Independent Subject Foundation of SKLGP(SKLGP2017Z010)。
文摘The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations.
基金Supported by the National Natural Science Foundation of China(Nos.41506034,41676004,41376001,41430963)the Basic Scientific Fund for National Public Research Institutes of China(No.GY0213G02)+1 种基金the National Program on Global Change and Air-Sea Interaction(No.GASIGEOGE-03)the National Key Research and Development Program(No.2016YFA0600900)
文摘Based on the data from a special project titled China's Offshore Marine Integrated Investigation and Evaluation as well as Regional Ocean Modeling Systems(ROMS)diagnostic numerical model,we studied the influence of high wind processes on the circulation and water exchange between the Bohai and Yellow Seas(BYS)in winter.The results show that the vertical structure of the Yellow Sea Warm Current(YSWC)is relatively uniform under condition of high winds,showing obvious barotropic features.However,this flow is not a stable mean flow,showing strong paroxysmal and reciprocating characteristics.A comparison of the changes in sea level suggests that the intensity of the northwards upwind flow is consistent with the abnormal fluctuations in the sea level.It indicates that the upwind flow is closely related to the water exchange between the BYS.The impact of high wind processes on the water exchange between the BYS is enormous.It can make the flux through the Bohai Strait,as well as that through the mouth of each constituent bay(i.e.,Liaodong Bay,Bohai Bay,and Laizhou Bay)far greater than usual,resulting in a significant increase in the water exchange rate.The exchange capacity,which is about 8%of the total volume of the Bohai Sea,can be completed in a few days.Therefore,the water exchange of the Bohai Sea may be completed by only a few occasional high wind processes in winter.
文摘A model has been constructed to study water flow in a single clay crack, and a new concept of the critical rise rate of water level in the crack has been put forward. When the water level rises faster than this critical rate, the flow in a crack will increase, and vice versa. The flow in a crack is not in proportion to the water level. The maximium water flow in clay is 30-40 times smaller than that in a rock fissure under the same condition. In the process of water discharge, the flow in a crack will lessen gradually, and the crack will grow narrower by 3.0-4.0cm, with its depth reducing by over 50%.