The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological securit...The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.展开更多
Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Qua...Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Quantitative Grain Fluorescence (QGF) experiments, well-tie seismic correlation, and paleo structure analysis, the scale and distribution of paleo hydrocarbon pools in the study area are outlined. Combining current structural features and fault characteristics, the re-migration pathways of paleo oil and gas are depicted. Based on barrier conditions on the oil re-migration pathways and current reservoir distribution, we recognize three types of secondary reservoirs. By analyzing structural evolution and sand body-fault distribution, the major control factors of secondary reservoirs are specified and, consequently, favorable zones for secondary reservoirs are predicted. The results are mainly as follows. (1) In the primary accumulation period in the Cretaceous, paleo hydrocarbon pools were formed in the Sangonghe Formation of the Mosuowan uplift and their size and distribution were extensive and the exploration potential for secondary reservoirs should not be ignored. Besides, paleo reservoirs were also formed in the Mobei uplift, but just small scale. (2) In the adjustment period in the Neogene, traps were reshaped or destroyed and so were the paleo reservoirs, resulting in oil release. The released oil migrated linearly northward along the structural highs of the Mobei uplift and the Qianshao low-relief uplift and then formed secondary reservoirs when it met new traps. In this process, a structural ridge cooperated with sand bodies and faults, applying unobstructed pathways for oil and gas re-migration. (3) The secondary hydrocarbon pools are classified into three types: low-relief anticlinal type, lithologic pinch-out type and fault block type. The distribution of the first type is controlled by a residual low uplift in the north flank of the paleo-anticline. The second type is distributed in the lithologic pinch-out zones on the periphery of the inherited paleo uplift. The third type is controlled by fault zones of which the strikes are perpendicular to the hydrocarbon re-migration pathways. (4) Four favorable zones for secondary reservoirs are predicted: the low-relief structural zone of the north flank of the Mosuowan paleo-anticline, the fault barrier zone on the western flank of the Mobei uplift, the Qianshao low-relief uplift and the north area of the Mobei uplift that parallels the fault zone. The study above effectively supports the exploration of the Qianshao low-relief uplift, with commercial oil discovered in the Qianshaol well. Besides, the research process in this paper can also be applied to other basins to explore for secondary reservoirs.展开更多
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank...Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.展开更多
With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs...With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs play a pivotal role in controlling the spatiotemporal distribution of physical and chemical properties of the stored water, hydrodynamic characteristics are of great importance in understanding biogeochemical cycles in those reservoirs. To further this understanding, a field campaign was conducted in the Wujiangdu Reservoir of Guizhou Province. It was found that from the reservoir inlet to the front of the dam, velocity(v) was negativelycorrelated and had a logarithmic relationship with distance along the ship track(s) under dry-season flow conditions[v =-0.104 ln(s) + 0.4756]. Analysis showed that dryseason flow velocity had no significant correlation with water temperature, p H, or dissolved oxygen(DO). However, when velocity decreased to 0.061 m/s, water depth increased abruptly. In addition, DO displayed a sudden drop and the trend in p H changed from increasing to decreasing, while water temperature showed an opposite trend, indicating the existence of a transition zone from the river to the reservoir.展开更多
The Silurian in the Tarim Basin was deposited on the basement deformed by the Caledonian tectonic movements at the end of the Late Ordovician. The development and distribution of sedimentary sequences of the Early Sil...The Silurian in the Tarim Basin was deposited on the basement deformed by the Caledonian tectonic movements at the end of the Late Ordovician. The development and distribution of sedimentary sequences of the Early Silurian have been clearly controlled by the palaeogeomorphology of the Late Ordovician. Based on unconformity characteristics and distribution of erosion, several zones can be differentiated including a high uplifted erosion zone, a transitional slope zone and a depression zone. The central and west Tabei Uplift zones show high angular unconformity and intense erosion. The Tarim Basin in the late Ordovician shows characteristics of higher in the west, lower in the east while higher in the south, lower in the north. The Early Silurian mainly developed transgressive and highstand systems tracts on the whole, while the lowstand systems tract only developed partly below the slope break. The palaeogeomorphology controlled the elastic source supply and deposit distribution. Braided delta system and tidal flat-estuary system were deposited. The duration of uplifting of the Tazhong paleo- uplift was longer than that of the Tabei paleo-uplift, and deposition was later. This led to the lower and middle members of the Kepingtage Formation missing in that area. As a large-scale transgression occurred during the deposition period of the upper member of the Kepingtage Formation, sediment from the west of the basin was transported and deposited by tides and waves, forming tidal-marine debris systems above the uplift. Proximal alluvial fan and fan delta coarse elastic deposits developed in proximal uplift zone in the east and southeast of the basin, and braided delta put forward to the transitional zone between the edge of uplift and the sea. Large-scale tidal channel, sub-distributary channel and mouth bar of the delta front can form favorable reservoirs, and they are primary targets for oil and gas exploration. This research on sequence-depositional systems development and distribution controlled by palaeogeomorphology is significant in guiding the prediction of reservoir sandstones.展开更多
The relationship between paleogeographic pattern and sedimentary differentiation of evaporite-carbonate symbiotic system is examined based on logging,core and thin section data,by taking the sixth sub-member of fifth ...The relationship between paleogeographic pattern and sedimentary differentiation of evaporite-carbonate symbiotic system is examined based on logging,core and thin section data,by taking the sixth sub-member of fifth member of Ordovician Majiagou Formation(M56)in the central-eastern Ordos Basin as an example.(1)Seven sub-geomorphic units(Taolimiao west low,Taolimiao underwater high,Taolimiao east low,Hengshan high,East salt low,North slope and Southwest slope)developed in the study area.(2)The“three lows”from west to east developed dolomitic restricted lagoon,evaporite evaporative lagoon and salt evaporative lagoon sedimentary facies respectively,the"two highs"developed high-energy grain beach and microbial mound,and the north and south slopes developed dolomitic flats around land.(3)The paleogeographic pattern caused natural differentiation of replenishment seawater from the northwest Qilian sea,leading to the eccentric sedimentary differentiation of dolomite,evaporite and salt rock symbiotic system from west to east,which is different from the classic“bull's eye”and“tear drop”distribution patterns.(4)As the Middle Qilian block subducted and collided into the North China Plate,the far-end compression stress transferred,giving rise to the alternate highland and lowland in near north to south direction during the sedimentary period of M56 sub-member.(5)Taolimiao underwater high and Hengshan high developed favorable zones of microbial mounds and grain shoals in south to north strike in M56 sub-member,making them favorable exploration areas with great exploration potential in the future.展开更多
基金funded by National Natural Science Foundation Project (40801077)Ministry of Education Key Project (209100)+1 种基金Natural Science Foundation of Chongqing ( CSTC, 2008BB7367 )Chongqing Municipal Education Commission of Science and Technology Research Grant Project (KJ070811)~~
文摘The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.
基金supported by the National Science and Technology Major Project(Grant No.2016ZX05046-001)the Petroleum Science Research and Technology Development Project,Petro China(Grant No.2016B-0301)
文摘Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Quantitative Grain Fluorescence (QGF) experiments, well-tie seismic correlation, and paleo structure analysis, the scale and distribution of paleo hydrocarbon pools in the study area are outlined. Combining current structural features and fault characteristics, the re-migration pathways of paleo oil and gas are depicted. Based on barrier conditions on the oil re-migration pathways and current reservoir distribution, we recognize three types of secondary reservoirs. By analyzing structural evolution and sand body-fault distribution, the major control factors of secondary reservoirs are specified and, consequently, favorable zones for secondary reservoirs are predicted. The results are mainly as follows. (1) In the primary accumulation period in the Cretaceous, paleo hydrocarbon pools were formed in the Sangonghe Formation of the Mosuowan uplift and their size and distribution were extensive and the exploration potential for secondary reservoirs should not be ignored. Besides, paleo reservoirs were also formed in the Mobei uplift, but just small scale. (2) In the adjustment period in the Neogene, traps were reshaped or destroyed and so were the paleo reservoirs, resulting in oil release. The released oil migrated linearly northward along the structural highs of the Mobei uplift and the Qianshao low-relief uplift and then formed secondary reservoirs when it met new traps. In this process, a structural ridge cooperated with sand bodies and faults, applying unobstructed pathways for oil and gas re-migration. (3) The secondary hydrocarbon pools are classified into three types: low-relief anticlinal type, lithologic pinch-out type and fault block type. The distribution of the first type is controlled by a residual low uplift in the north flank of the paleo-anticline. The second type is distributed in the lithologic pinch-out zones on the periphery of the inherited paleo uplift. The third type is controlled by fault zones of which the strikes are perpendicular to the hydrocarbon re-migration pathways. (4) Four favorable zones for secondary reservoirs are predicted: the low-relief structural zone of the north flank of the Mosuowan paleo-anticline, the fault barrier zone on the western flank of the Mobei uplift, the Qianshao low-relief uplift and the north area of the Mobei uplift that parallels the fault zone. The study above effectively supports the exploration of the Qianshao low-relief uplift, with commercial oil discovered in the Qianshaol well. Besides, the research process in this paper can also be applied to other basins to explore for secondary reservoirs.
基金Financial support for this study was jointly provided by the National Natural Science Foundation of China (Grant No. 41201272)the Chinese Academy of Sciences Action-plan for West Development (Grant No. KZCX2-XB3-09)the Chinese Academy of Science (Light of West China Program)
文摘Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.
基金financially supported by the National Key Research and Development Programme of China(2016YFA0601001)the National Natural Science Foundation of China(Grant Nos.U1612441 and 41473082)CAS"Light of West China"Program
文摘With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs play a pivotal role in controlling the spatiotemporal distribution of physical and chemical properties of the stored water, hydrodynamic characteristics are of great importance in understanding biogeochemical cycles in those reservoirs. To further this understanding, a field campaign was conducted in the Wujiangdu Reservoir of Guizhou Province. It was found that from the reservoir inlet to the front of the dam, velocity(v) was negativelycorrelated and had a logarithmic relationship with distance along the ship track(s) under dry-season flow conditions[v =-0.104 ln(s) + 0.4756]. Analysis showed that dryseason flow velocity had no significant correlation with water temperature, p H, or dissolved oxygen(DO). However, when velocity decreased to 0.061 m/s, water depth increased abruptly. In addition, DO displayed a sudden drop and the trend in p H changed from increasing to decreasing, while water temperature showed an opposite trend, indicating the existence of a transition zone from the river to the reservoir.
基金funded by the National Key Basic Research Program (973) (No. 2006CB202302)National Natural Science Foundation Program (No. 40372056)+1 种基金Fundamental Research Funds for the Central Universities(2010ZD07)the Frontier Research Project of Marine Facies (Evolution of the Tarim Basin and Surrounding Areaand Petroleum Resource Prospecting)
文摘The Silurian in the Tarim Basin was deposited on the basement deformed by the Caledonian tectonic movements at the end of the Late Ordovician. The development and distribution of sedimentary sequences of the Early Silurian have been clearly controlled by the palaeogeomorphology of the Late Ordovician. Based on unconformity characteristics and distribution of erosion, several zones can be differentiated including a high uplifted erosion zone, a transitional slope zone and a depression zone. The central and west Tabei Uplift zones show high angular unconformity and intense erosion. The Tarim Basin in the late Ordovician shows characteristics of higher in the west, lower in the east while higher in the south, lower in the north. The Early Silurian mainly developed transgressive and highstand systems tracts on the whole, while the lowstand systems tract only developed partly below the slope break. The palaeogeomorphology controlled the elastic source supply and deposit distribution. Braided delta system and tidal flat-estuary system were deposited. The duration of uplifting of the Tazhong paleo- uplift was longer than that of the Tabei paleo-uplift, and deposition was later. This led to the lower and middle members of the Kepingtage Formation missing in that area. As a large-scale transgression occurred during the deposition period of the upper member of the Kepingtage Formation, sediment from the west of the basin was transported and deposited by tides and waves, forming tidal-marine debris systems above the uplift. Proximal alluvial fan and fan delta coarse elastic deposits developed in proximal uplift zone in the east and southeast of the basin, and braided delta put forward to the transitional zone between the edge of uplift and the sea. Large-scale tidal channel, sub-distributary channel and mouth bar of the delta front can form favorable reservoirs, and they are primary targets for oil and gas exploration. This research on sequence-depositional systems development and distribution controlled by palaeogeomorphology is significant in guiding the prediction of reservoir sandstones.
基金Supported by the Fundamental Project of China National Petroleum Corporation(2021DJ0501).
文摘The relationship between paleogeographic pattern and sedimentary differentiation of evaporite-carbonate symbiotic system is examined based on logging,core and thin section data,by taking the sixth sub-member of fifth member of Ordovician Majiagou Formation(M56)in the central-eastern Ordos Basin as an example.(1)Seven sub-geomorphic units(Taolimiao west low,Taolimiao underwater high,Taolimiao east low,Hengshan high,East salt low,North slope and Southwest slope)developed in the study area.(2)The“three lows”from west to east developed dolomitic restricted lagoon,evaporite evaporative lagoon and salt evaporative lagoon sedimentary facies respectively,the"two highs"developed high-energy grain beach and microbial mound,and the north and south slopes developed dolomitic flats around land.(3)The paleogeographic pattern caused natural differentiation of replenishment seawater from the northwest Qilian sea,leading to the eccentric sedimentary differentiation of dolomite,evaporite and salt rock symbiotic system from west to east,which is different from the classic“bull's eye”and“tear drop”distribution patterns.(4)As the Middle Qilian block subducted and collided into the North China Plate,the far-end compression stress transferred,giving rise to the alternate highland and lowland in near north to south direction during the sedimentary period of M56 sub-member.(5)Taolimiao underwater high and Hengshan high developed favorable zones of microbial mounds and grain shoals in south to north strike in M56 sub-member,making them favorable exploration areas with great exploration potential in the future.