Different forest stands in the Dongjiang Lake Reservoir area of Zixing were selected as the research objects to study the characteristics of runoff generation in different forest stands.The results showed that there w...Different forest stands in the Dongjiang Lake Reservoir area of Zixing were selected as the research objects to study the characteristics of runoff generation in different forest stands.The results showed that there was no significant difference in annual runoff among M3,M1,and M5,and no significant difference between each forest stand and the control.The order was M3(22.75 mm)>M1(21.77 mm)>M5(20.14 mm).Forest vegetation generates less runoff through vegetation restoration compared to the control,indicating that forest vegetation reconstruction and restoration are beneficial for soil and water conservation.展开更多
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p...In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir.展开更多
[Objective] The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed...[Objective] The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed hydrological model was established to simulate the monthly runoff of Shitoukoumen Reservoir basin, and the years 2006 and 2010 were chosen as the calibration and validation period respectively. [Result] The simulation results indicated that SWAT model could be used to simulate the runoff of Shitoukoumen Reservoir basin, and the simulation effect was good. However, the response of the model to local rainstorm was not obvious, so that the actual runoff in June and July of 2010 was abnormally higher than the simulation value. [Conclusion] The research could provide theoretical references for the plan and management of water resources in Shitoukoumen Reservoir basin in future.展开更多
To understand the earthquake characteristics in Xinfengjiang (XFJ for short) reservoir area, we collected the small earthquakes occurred in the area from 1961 to 1999. We segmented this 40-year period, parted the rese...To understand the earthquake characteristics in Xinfengjiang (XFJ for short) reservoir area, we collected the small earthquakes occurred in the area from 1961 to 1999. We segmented this 40-year period, parted the research region and calculated the composite fault plane solution of each block, disscussed the effect characteristics of stress field of water pressure using Mohrs stress circle. The final result shows that the main rupture pattern was very different before and after the M = 6.1 main shock, changing from strike slip to normal rupture. The maximum principal stress axes of composite fault plane solutions are characterized by synchronous change with water level.展开更多
Traditionally, fluid substitutions are often conducted on log data for calculating reservoir elastic properties with different pore fluids. Their corresponding seismic responses are computed by seismic forward modelin...Traditionally, fluid substitutions are often conducted on log data for calculating reservoir elastic properties with different pore fluids. Their corresponding seismic responses are computed by seismic forward modeling for direct gas reservoir identification. The workflow provides us with the information about reservoir and seismic but just at the well. For real reservoirs, the reservoir parameters such as porosity, clay content, and thickness vary with location. So the information from traditional fluid substitution just at the well is limited. By assuming a rock physics model linking the elastic properties to porosity and mineralogy, we conducted seismic forward modeling and AVO attributes computation on a three-layer earth model with varying porosity, clay content, and formation thickness. Then we analyzed the relations between AVO attributes at wet reservoirs and those at the same but gas reservoirs. We arrived at their linear relations within the assumption framework used in the forward modeling. Their linear relations make it possible to directly conduct fluid substitution on seismic AVO attributes. Finally, we applied these linear relations for fluid substitution on seismic data and identified gas reservoirs by the cross-plot between the AVO attributes from seismic data and those from seismic data after direct fluid substitution.展开更多
The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Re...The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Reservoir.This study aims to characterize the spatial distribution,inter-annual variation of runoff and sediment load in the Jinsha River Basin,and to analyze the contribution of rainfall and human activities to the runoff and sediment load changes.The monitoring data on runoff,sediment load and precipitation were collected from 11hydrological stations in the Jinsha River Basin from1966 to 2016.The data observed at the outlet of the basin showed that 71.4%of the runoff is from the upper reaches of the Jinsha River Basin and the Yalong River,while 63.3%of the sediment is from the lower reaches(excluding the Yalong River).There is no significant increase in runoff on temporal scale in the Jinsha River Basin,while it has an abrupt change in runoff in both upstream and midstream in 1985,and an abrupt change in downstream in 1980 and2013.The sediment load demonstrated a significantincreasing trend in the upstream,no significant reducing trend in the midstream,but significant reducing trend in the downstream.The sediment load in upstream showed abrupt change in 1987,in midstream in 1978 and 2014,in downstream in 2012.Rainfall dominated runoff variation,contributing more than 59.0%of the total variation,while human activity,including reservoirs construction,the implementation of soil and water conservation projects,is the major factor to sediment load variation,contributing more than 87.0%of the total variation.展开更多
This study examined the temporal trends of runoff and sediment load and their differential response to human activities in the Lishui river,a tributary of the Yangtze river in southern China.The long-term observation ...This study examined the temporal trends of runoff and sediment load and their differential response to human activities in the Lishui river,a tributary of the Yangtze river in southern China.The long-term observation data at four gauging stations,generally involving two periods from 1954 to 1985 and from 2007 to 2011,were used.We detected no significant temporal trend for both the annual runoff volume(Q) and the annual suspended Sediment Load(SL) over more than 30 years before 1985.The flow duration curves and the Suspended Sediment Concentration(SSC) also hold constant before 1985.Compared with the period before 1985,SL has decreased by about 80% though Q remains unchanged for the period after 2007.Detailed examination shows that the flow duration curves after 2007 have changed with a significant decrease in the high-flow component,which acts as a major cause for the decreasing SL.In addition,SSC has decreased by several times,which also contributes to the decrease in SL after 2007.Both decreases in high-flow discharges and in SSC can be linked with recent human activities,mainly including vegetation establishment and dam constructions.The constant Q and the decreasing SL are also reported for the main stream of the Yangtze River and other major rivers in southern China,although they are orders of magnitude larger than our study area in drainage area size.The present study highlights the importance of high-flow discharges on SL and suggests that the use of SL is more appropriate to reflect environmental change than Q.展开更多
Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary stora...Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary storage space shape influences the P-& S-wave velocities (or elastic properties) in complex carbonate reservoirs.In this paper,three classical rock physics models (Wyllie timeaverage equation,Gassmann equation and the Kuster-Toks z model) are comparably analyzed for their construction principles and actual velocity prediction results,aiming at determining the most favourable rock physics model to consider the influence of secondary storage space shape.Then relationships between the P-& S-wave velocities in carbonate reservoirs and geometric shapes of secondary storage spaces are discussed from different aspects based on actual well data by employing the favourable rock physics model.To explain the influence of secondary storage space shape on V P-V S relationship,it is analyzed for the differences of S-wave velocities between derived from common empirical relationships (including Castagna's mud rock line and Greenberg-Castagna V P-V S relationship) and predicted by the rock physics model.We advocate that V P-V S relationship for complex carbonate reservoirs should be built for different storage space types.For the carbonate reservoirs in the Tarim Basin,the V P-V S relationships for fractured,fractured-cavernous,and fractured-hole-vuggy reservoirs are respectively built on the basis of velocity prediction and secondary storage space type determination.Through the discussion above,it is expected that the velocity prediction and the V P-V S relationships for complex carbonate reservoirs should fully consider the influence of secondary storage space shape,thus providing more reasonable constraints for prestack inversion,further building a foundation for realizing carbonate reservoir prediction and fluid prediction.展开更多
Many of the sedimentary basins in western China were formed through the superposition and compounding of at least two previously developed sedimentary basins and in general they can be termed as complex superimposed b...Many of the sedimentary basins in western China were formed through the superposition and compounding of at least two previously developed sedimentary basins and in general they can be termed as complex superimposed basins. The distinct differences between these basins and monotype basins are their discontinuous stratigraphic sedimentation, stratigraphic structure and stratigraphic stress-strain action over geological history. Based on the correlation of chronological age on structural sections, superimposed basins can be divided into five types in this study: (1) continuous sedimentation type superimposed basins, (2) middle and late stratigraphic superimposed basins, (3) early and late stratigraphic superimposed basins, (4) early and middle stratigraphic superimposed basins, and (5) long-term exposed superimposed basins. Multiple source-reservoir-caprock assemblages have developed in such basins. In addition, multi-stage hydrocarbon generation and expulsion, multiple sources, polycyclic hydrocarbon accumulation and multiple-type hydrocarbon reservoirs adjustment, reformation and destruction have occurred in these basins. The complex reservoirs that have been discovered widely in the superimposed basins to date have remarkably different geologic features from primary reservoirs, and the root causes of this are folding, denudation and the fracture effect caused by multiphase tectonic events in the superimposed basins as well as associated seepage, diffusion, spilling, oxidation, degradation and cracking. Based on their genesis characteristics, complex reservoirs are divided into five categories: (1) primary reservoirs, (2) trap adjustment type reservoirs, (3) component variant reservoirs, (4) phase conversion type reservoirs and (5) scale-reformed reservoirs.展开更多
The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff...The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff time-series datasets during 1958-2012 within the Kaidu River Basin, the synchronism of runoff response to climate change was analyzed and iden- tified by applying several classic methods, including standardization methods, Kendall's W test, the sequential version of the Mann-Kendall test, wavelet power spectrum analysis, and the rescaled range (R/S) approach. The concordance of the nonlinear trend variations of the annual mean temperature, annual precipitation, and runoff was tested significantly at the 0.05 level by Kendall's W method. The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature. The periodic characteristics of annual runoff were mainly consistent with annual precipitation, having synchronous 3-year significant periods and the same 6-year, 10-year, and 38-year quasi-periodicities. While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation, the abrupt changes in annual runoff were synchronous with the annual mean temperature, which directly drives glacier- and snow-melt processes. R/S analysis indicated that the annual mean temperature, annual precipitation, and runoff will continue to increase and remain synchronously persistent in the future. This work can improve the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin, a regional sustainable socio-economie development.展开更多
Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with di...Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition.展开更多
Forecasting of a nonlinear cascade was developed for modeling watershed runoff, and was tested by computing the direct runoff hydrograph for two rainfall- runoff events on a small watershed in China . The forecasting ...Forecasting of a nonlinear cascade was developed for modeling watershed runoff, and was tested by computing the direct runoff hydrograph for two rainfall- runoff events on a small watershed in China . The forecasting model was superior to Ding s variable unit hydrograph method and the method of limited differences for these two events.展开更多
Jiyang depression, which is the main oil productive area of Shengli oil field, is located at the southeast part of the Bohai Bay Basin and is a terrestrial lacustrine rift subsidence basin formed in the late Mesozoic ...Jiyang depression, which is the main oil productive area of Shengli oil field, is located at the southeast part of the Bohai Bay Basin and is a terrestrial lacustrine rift subsidence basin formed in the late Mesozoic with fully developed fault system. The main hydrocarbon productive formations of this depression are the terrestrial clastic rocks of the Tertiary, which are of strong lateral variation. The complex fault reservoirs and subtle lithological reservoirs distributed extensively and are becoming the main exploration targets in recent years. The exploration and development practice in these years has formed the exploration technologies, mainly including detailed study and description of low grade faults, delineation of microstructures, facies constrained formation description and prediction and low resistivity oil bearing formation’s identification. These exploration technologies have resulted in remarkable effectiveness on the reserve and oil production increments.展开更多
This paper demonstrates the use of a commercial simulator as a tool with which to optimize the SAGD (steam-assisted gravity drainage) start-up phase process. The factors affecting the start-up phase are the prime ta...This paper demonstrates the use of a commercial simulator as a tool with which to optimize the SAGD (steam-assisted gravity drainage) start-up phase process. The factors affecting the start-up phase are the prime targets. Among the key investigated factors are wellbore geometry effects, reservoir heterogeneity and circulation phase length. Each of the parameters was investigated via steam chamber development observation along the well pair length and the cross sections in the mid, toe and heel areas. In addition, the cumulative recovery in given time, steam-to-oil ratio and CDOR (calendar day oil rate) production data are used to backup the observations produced in the simulated model. Furthermore, an additional component developed during the research is a statistical modification of a layer cake model with which to create a heterogeneous reservoir to represent real reservoir conditions, based on Monte Carlo's simulation.展开更多
In rainfall-runoff modelling, a monthly timescale and an annual one are sufficient for the management of deductions. However, to simulate the flow at a large time-step (annual), we generally precede the use of a model...In rainfall-runoff modelling, a monthly timescale and an annual one are sufficient for the management of deductions. However, to simulate the flow at a large time-step (annual), we generally precede the use of a model working for a finer time-step (daily) while aggregating the desired outputs. The finest time-steps are considered, apriori, as the most performant. By passing from one time-step to another, and in order to work in the desired time-step (annual) and calculate the potential gains or loss, this article proposed a comparative study between the aggregation method of outputs of a modal working at a finer time step, and a method in which we use a conceived model from the beginning. To ensure this comparative and empirical approach, the choice has been focused on (GRs) models to a daily time-step (GR4J), monthly time step (GR2M) and annual time step (GR1A). The modelling platform used is the same for all three models taking into account the specificities of each one: the same data sample, the same optimization method, and the same function criterion are used during the construction of these models. Due to the moving between these time steps, results show that the best way to simulate the annual flow is to use an appropriate and designed modal initially conceived to this time step. Indeed, this simulation seems to be less effective when using a model at a finer time-step (daily).展开更多
The regular hydrochemical monitoring of groundwater in the Mila basin over an extended period has provided valuable insights into the origin of dissolved salts and the hydrogeochemical processes controlling water sali...The regular hydrochemical monitoring of groundwater in the Mila basin over an extended period has provided valuable insights into the origin of dissolved salts and the hydrogeochemical processes controlling water salinization.The data reveals that the shallow Karst aquifer shows an increase in TDS of 162 mg L^(-1) while the ther-mal carbonate aquifer that is also used for drinking water supply exhibits an increase of 178 mg L^(-1).Additionally,significant temperature variations are recorded at the sur-face in the shallow aquifers and the waters are carbo-gaseous.Analysis of dissolved major and minor elements has identified several processes influencing the chemical composition namely:dissolution of evaporitic minerals,reduction of sulphates,congruent and incongruent car-bonates’dissolution,dedolomitization and silicates’weathering.The hydrogeochemical and geothermometric results show a mixing of saline thermal water with recharge water of meteoric origin.Two main geothermalfields have been identified,a partially evolved water reservoir and a water reservoir whosefluid interacts with sulphuric acid(H_(2)S)of magmatic origin.These hot waters that are char-acterized by a strong hydrothermal alteration do ascend through faults and fractures and contribute to the contamination of shallower aquifers.Understanding the geothermometry and the hydrogeochemistry of waters is crucial for managing and protecting the quality of groundwater resources in the Mila basin,in order to ensure sustainable water supply for the region.A conceptual model for groundwater circulation and mineralization acquisition has been established to further enhance under-standing in this regard.展开更多
基金Supported by Hunan Province Science and Technology Plan Project(2019SK2336,2019sfq21,2021SFQ19)Hunan Forestry Science and Technology Plan Project(OT-S-KTA5,2024YBC15).
文摘Different forest stands in the Dongjiang Lake Reservoir area of Zixing were selected as the research objects to study the characteristics of runoff generation in different forest stands.The results showed that there was no significant difference in annual runoff among M3,M1,and M5,and no significant difference between each forest stand and the control.The order was M3(22.75 mm)>M1(21.77 mm)>M5(20.14 mm).Forest vegetation generates less runoff through vegetation restoration compared to the control,indicating that forest vegetation reconstruction and restoration are beneficial for soil and water conservation.
基金Supported by the National Natural Science Foundation of China(U19B6003)Sinopec Technology Research Project(P20077kxjgz)。
文摘In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir.
基金Supported by the Project of Changchun Science and Technology Bureau(09RY33)
文摘[Objective] The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed hydrological model was established to simulate the monthly runoff of Shitoukoumen Reservoir basin, and the years 2006 and 2010 were chosen as the calibration and validation period respectively. [Result] The simulation results indicated that SWAT model could be used to simulate the runoff of Shitoukoumen Reservoir basin, and the simulation effect was good. However, the response of the model to local rainstorm was not obvious, so that the actual runoff in June and July of 2010 was abnormally higher than the simulation value. [Conclusion] The research could provide theoretical references for the plan and management of water resources in Shitoukoumen Reservoir basin in future.
基金Seismic Research Foundation of Residential Office in Shenzhen China Earthquake Administration (2003-1000).
文摘To understand the earthquake characteristics in Xinfengjiang (XFJ for short) reservoir area, we collected the small earthquakes occurred in the area from 1961 to 1999. We segmented this 40-year period, parted the research region and calculated the composite fault plane solution of each block, disscussed the effect characteristics of stress field of water pressure using Mohrs stress circle. The final result shows that the main rupture pattern was very different before and after the M = 6.1 main shock, changing from strike slip to normal rupture. The maximum principal stress axes of composite fault plane solutions are characterized by synchronous change with water level.
基金sponsored by the National Natural Science Foundation of China (No.41074098)
文摘Traditionally, fluid substitutions are often conducted on log data for calculating reservoir elastic properties with different pore fluids. Their corresponding seismic responses are computed by seismic forward modeling for direct gas reservoir identification. The workflow provides us with the information about reservoir and seismic but just at the well. For real reservoirs, the reservoir parameters such as porosity, clay content, and thickness vary with location. So the information from traditional fluid substitution just at the well is limited. By assuming a rock physics model linking the elastic properties to porosity and mineralogy, we conducted seismic forward modeling and AVO attributes computation on a three-layer earth model with varying porosity, clay content, and formation thickness. Then we analyzed the relations between AVO attributes at wet reservoirs and those at the same but gas reservoirs. We arrived at their linear relations within the assumption framework used in the forward modeling. Their linear relations make it possible to directly conduct fluid substitution on seismic AVO attributes. Finally, we applied these linear relations for fluid substitution on seismic data and identified gas reservoirs by the cross-plot between the AVO attributes from seismic data and those from seismic data after direct fluid substitution.
基金supported by the “National Key R & D Plan Project of China (2018YFD0200502)the 135 Strategic Program of the Institute of Mountain Hazards and Environment, CAS (SDS135-1702)
文摘The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Reservoir.This study aims to characterize the spatial distribution,inter-annual variation of runoff and sediment load in the Jinsha River Basin,and to analyze the contribution of rainfall and human activities to the runoff and sediment load changes.The monitoring data on runoff,sediment load and precipitation were collected from 11hydrological stations in the Jinsha River Basin from1966 to 2016.The data observed at the outlet of the basin showed that 71.4%of the runoff is from the upper reaches of the Jinsha River Basin and the Yalong River,while 63.3%of the sediment is from the lower reaches(excluding the Yalong River).There is no significant increase in runoff on temporal scale in the Jinsha River Basin,while it has an abrupt change in runoff in both upstream and midstream in 1985,and an abrupt change in downstream in 1980 and2013.The sediment load demonstrated a significantincreasing trend in the upstream,no significant reducing trend in the midstream,but significant reducing trend in the downstream.The sediment load in upstream showed abrupt change in 1987,in midstream in 1978 and 2014,in downstream in 2012.Rainfall dominated runoff variation,contributing more than 59.0%of the total variation,while human activity,including reservoirs construction,the implementation of soil and water conservation projects,is the major factor to sediment load variation,contributing more than 87.0%of the total variation.
基金funded by Special Foundation for Protection of Geoheritages in Zhangjiajie World GeoparkNational Natural Science Foundation of China(Grant No.41271306)
文摘This study examined the temporal trends of runoff and sediment load and their differential response to human activities in the Lishui river,a tributary of the Yangtze river in southern China.The long-term observation data at four gauging stations,generally involving two periods from 1954 to 1985 and from 2007 to 2011,were used.We detected no significant temporal trend for both the annual runoff volume(Q) and the annual suspended Sediment Load(SL) over more than 30 years before 1985.The flow duration curves and the Suspended Sediment Concentration(SSC) also hold constant before 1985.Compared with the period before 1985,SL has decreased by about 80% though Q remains unchanged for the period after 2007.Detailed examination shows that the flow duration curves after 2007 have changed with a significant decrease in the high-flow component,which acts as a major cause for the decreasing SL.In addition,SSC has decreased by several times,which also contributes to the decrease in SL after 2007.Both decreases in high-flow discharges and in SSC can be linked with recent human activities,mainly including vegetation establishment and dam constructions.The constant Q and the decreasing SL are also reported for the main stream of the Yangtze River and other major rivers in southern China,although they are orders of magnitude larger than our study area in drainage area size.The present study highlights the importance of high-flow discharges on SL and suggests that the use of SL is more appropriate to reflect environmental change than Q.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(Grant No.2011ZX05004003)
文摘Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary storage space shape influences the P-& S-wave velocities (or elastic properties) in complex carbonate reservoirs.In this paper,three classical rock physics models (Wyllie timeaverage equation,Gassmann equation and the Kuster-Toks z model) are comparably analyzed for their construction principles and actual velocity prediction results,aiming at determining the most favourable rock physics model to consider the influence of secondary storage space shape.Then relationships between the P-& S-wave velocities in carbonate reservoirs and geometric shapes of secondary storage spaces are discussed from different aspects based on actual well data by employing the favourable rock physics model.To explain the influence of secondary storage space shape on V P-V S relationship,it is analyzed for the differences of S-wave velocities between derived from common empirical relationships (including Castagna's mud rock line and Greenberg-Castagna V P-V S relationship) and predicted by the rock physics model.We advocate that V P-V S relationship for complex carbonate reservoirs should be built for different storage space types.For the carbonate reservoirs in the Tarim Basin,the V P-V S relationships for fractured,fractured-cavernous,and fractured-hole-vuggy reservoirs are respectively built on the basis of velocity prediction and secondary storage space type determination.Through the discussion above,it is expected that the velocity prediction and the V P-V S relationships for complex carbonate reservoirs should fully consider the influence of secondary storage space shape,thus providing more reasonable constraints for prestack inversion,further building a foundation for realizing carbonate reservoir prediction and fluid prediction.
基金the National Key Fundamental Research Plan "973" Project(2006CB202308) for funds for this paper
文摘Many of the sedimentary basins in western China were formed through the superposition and compounding of at least two previously developed sedimentary basins and in general they can be termed as complex superimposed basins. The distinct differences between these basins and monotype basins are their discontinuous stratigraphic sedimentation, stratigraphic structure and stratigraphic stress-strain action over geological history. Based on the correlation of chronological age on structural sections, superimposed basins can be divided into five types in this study: (1) continuous sedimentation type superimposed basins, (2) middle and late stratigraphic superimposed basins, (3) early and late stratigraphic superimposed basins, (4) early and middle stratigraphic superimposed basins, and (5) long-term exposed superimposed basins. Multiple source-reservoir-caprock assemblages have developed in such basins. In addition, multi-stage hydrocarbon generation and expulsion, multiple sources, polycyclic hydrocarbon accumulation and multiple-type hydrocarbon reservoirs adjustment, reformation and destruction have occurred in these basins. The complex reservoirs that have been discovered widely in the superimposed basins to date have remarkably different geologic features from primary reservoirs, and the root causes of this are folding, denudation and the fracture effect caused by multiphase tectonic events in the superimposed basins as well as associated seepage, diffusion, spilling, oxidation, degradation and cracking. Based on their genesis characteristics, complex reservoirs are divided into five categories: (1) primary reservoirs, (2) trap adjustment type reservoirs, (3) component variant reservoirs, (4) phase conversion type reservoirs and (5) scale-reformed reservoirs.
基金financially supported by the National Natural Science Foundation of China(No.41471031)
文摘The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff time-series datasets during 1958-2012 within the Kaidu River Basin, the synchronism of runoff response to climate change was analyzed and iden- tified by applying several classic methods, including standardization methods, Kendall's W test, the sequential version of the Mann-Kendall test, wavelet power spectrum analysis, and the rescaled range (R/S) approach. The concordance of the nonlinear trend variations of the annual mean temperature, annual precipitation, and runoff was tested significantly at the 0.05 level by Kendall's W method. The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature. The periodic characteristics of annual runoff were mainly consistent with annual precipitation, having synchronous 3-year significant periods and the same 6-year, 10-year, and 38-year quasi-periodicities. While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation, the abrupt changes in annual runoff were synchronous with the annual mean temperature, which directly drives glacier- and snow-melt processes. R/S analysis indicated that the annual mean temperature, annual precipitation, and runoff will continue to increase and remain synchronously persistent in the future. This work can improve the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin, a regional sustainable socio-economie development.
基金funded by West Light Foundation of The Chinese Academy of Sciences,CASthe State Council Three Gorges Construction Committee Project of China
文摘Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition.
文摘Forecasting of a nonlinear cascade was developed for modeling watershed runoff, and was tested by computing the direct runoff hydrograph for two rainfall- runoff events on a small watershed in China . The forecasting model was superior to Ding s variable unit hydrograph method and the method of limited differences for these two events.
文摘Jiyang depression, which is the main oil productive area of Shengli oil field, is located at the southeast part of the Bohai Bay Basin and is a terrestrial lacustrine rift subsidence basin formed in the late Mesozoic with fully developed fault system. The main hydrocarbon productive formations of this depression are the terrestrial clastic rocks of the Tertiary, which are of strong lateral variation. The complex fault reservoirs and subtle lithological reservoirs distributed extensively and are becoming the main exploration targets in recent years. The exploration and development practice in these years has formed the exploration technologies, mainly including detailed study and description of low grade faults, delineation of microstructures, facies constrained formation description and prediction and low resistivity oil bearing formation’s identification. These exploration technologies have resulted in remarkable effectiveness on the reserve and oil production increments.
文摘This paper demonstrates the use of a commercial simulator as a tool with which to optimize the SAGD (steam-assisted gravity drainage) start-up phase process. The factors affecting the start-up phase are the prime targets. Among the key investigated factors are wellbore geometry effects, reservoir heterogeneity and circulation phase length. Each of the parameters was investigated via steam chamber development observation along the well pair length and the cross sections in the mid, toe and heel areas. In addition, the cumulative recovery in given time, steam-to-oil ratio and CDOR (calendar day oil rate) production data are used to backup the observations produced in the simulated model. Furthermore, an additional component developed during the research is a statistical modification of a layer cake model with which to create a heterogeneous reservoir to represent real reservoir conditions, based on Monte Carlo's simulation.
文摘In rainfall-runoff modelling, a monthly timescale and an annual one are sufficient for the management of deductions. However, to simulate the flow at a large time-step (annual), we generally precede the use of a model working for a finer time-step (daily) while aggregating the desired outputs. The finest time-steps are considered, apriori, as the most performant. By passing from one time-step to another, and in order to work in the desired time-step (annual) and calculate the potential gains or loss, this article proposed a comparative study between the aggregation method of outputs of a modal working at a finer time step, and a method in which we use a conceived model from the beginning. To ensure this comparative and empirical approach, the choice has been focused on (GRs) models to a daily time-step (GR4J), monthly time step (GR2M) and annual time step (GR1A). The modelling platform used is the same for all three models taking into account the specificities of each one: the same data sample, the same optimization method, and the same function criterion are used during the construction of these models. Due to the moving between these time steps, results show that the best way to simulate the annual flow is to use an appropriate and designed modal initially conceived to this time step. Indeed, this simulation seems to be less effective when using a model at a finer time-step (daily).
文摘The regular hydrochemical monitoring of groundwater in the Mila basin over an extended period has provided valuable insights into the origin of dissolved salts and the hydrogeochemical processes controlling water salinization.The data reveals that the shallow Karst aquifer shows an increase in TDS of 162 mg L^(-1) while the ther-mal carbonate aquifer that is also used for drinking water supply exhibits an increase of 178 mg L^(-1).Additionally,significant temperature variations are recorded at the sur-face in the shallow aquifers and the waters are carbo-gaseous.Analysis of dissolved major and minor elements has identified several processes influencing the chemical composition namely:dissolution of evaporitic minerals,reduction of sulphates,congruent and incongruent car-bonates’dissolution,dedolomitization and silicates’weathering.The hydrogeochemical and geothermometric results show a mixing of saline thermal water with recharge water of meteoric origin.Two main geothermalfields have been identified,a partially evolved water reservoir and a water reservoir whosefluid interacts with sulphuric acid(H_(2)S)of magmatic origin.These hot waters that are char-acterized by a strong hydrothermal alteration do ascend through faults and fractures and contribute to the contamination of shallower aquifers.Understanding the geothermometry and the hydrogeochemistry of waters is crucial for managing and protecting the quality of groundwater resources in the Mila basin,in order to ensure sustainable water supply for the region.A conceptual model for groundwater circulation and mineralization acquisition has been established to further enhance under-standing in this regard.