期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MAQMC:Multi-Agent Deep Q-Network for Multi-Zone Residential HVAC Control
1
作者 Zhengkai Ding Qiming Fu +4 位作者 Jianping Chen You Lu Hongjie Wu Nengwei Fang Bin Xing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2759-2785,共27页
The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep r... The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep reinforcement learning(DRL)methods have recently been proposed to address the HVAC control problem.However,the application of single-agent DRL formulti-zone residential HVAC controlmay lead to non-convergence or slow convergence.In this paper,we propose MAQMC(Multi-Agent deep Q-network for multi-zone residential HVAC Control)to address this challenge with the goal of minimizing energy consumption while maintaining occupants’thermal comfort.MAQMC is divided into MAQMC2(MAQMC with two agents:one agent controls the temperature of each zone,and the other agent controls the humidity of each zone)and MAQMC3(MAQMC with three agents:three agents control the temperature and humidity of three zones,respectively).The experimental results showthatMAQMC3 can reduce energy consumption by 6.27%andMAQMC2 by 3.73%compared with the fixed point;compared with the rule-based,MAQMC3 andMAQMC2 respectively can reduce 61.89%and 59.07%comfort violation.In addition,experiments with different regional weather data demonstrate that the well-trained MAQMC RL agents have the robustness and adaptability to unknown environments. 展开更多
关键词 Deep reinforcement learning multi-zone residential hvac MULTI-AGENT energy conservation comfort
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部