The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different...By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different heating ways,to provide references for choosing a suitable heating way in the local area.展开更多
A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existi...A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existing heating building data based on traditional heating design already adopted by engineering firms in Jordan. The traditional heating load was transferred into electrical load to be supplied by hybrid system. The hybrid system consists of a 75 kW vertical axis windmill and 140 solar modules. Because of the high cost of land in residential buildings, the hybrid system is to be installed on the building roof. The hybrid system and the conventional systems' cost were found to be compatible in four years period when oil prices reach $100 per barrel. As the international price of oil rises above $100 per barrel, the proposed hybrid system becomes more economical than the already existing hot water heating system.展开更多
Building simulation is a powerful way to evaluate the performance of a building.The quality of simulation results however strongly depends on the accuracy of simulation input data.Especially for weather data files and...Building simulation is a powerful way to evaluate the performance of a building.The quality of simulation results however strongly depends on the accuracy of simulation input data.Especially for weather data files and occupant behaviour it is difficult to obtain accurate data.This paper evaluates the variability of building simulation results with regards to different weather data sets as well as different heating and cooling set points for a residential building in Victoria,Australia.Thermal comfort accord-ing to ASHRAE Standard 55,final energy consumption and peak cooling and heating loads are assessed.Simulations have been performed with Energy-Plus,and weather data for a multi-year approach have been generated with the software Meteonorm.The results show that different weather files for the same location as well as different conditioning set points can influence the results by approximately a factor of 2.展开更多
Given the growing interest in ground source heat pump and distributed heating installations in general for the reduction of greenhouse gas emissions,technology implementation planning can benefit from the simultaneous...Given the growing interest in ground source heat pump and distributed heating installations in general for the reduction of greenhouse gas emissions,technology implementation planning can benefit from the simultaneous consideration of building renovations.Here,a method for identifying and evaluating scenarios based on cost and greenhouse gas emissions is presented.The method is demonstrated for a case study in Vaasa Finland.The case study considers the insulation of the walls,roof,and base floor and the replacement of windows based on 2003 and 2010 Finnish building codes simultaneously with the possible replacement of existing heat sources with ground source heat pumps.Estimates of changes in heat demand for consecutive renovations are combined with data on renovation,installation,heating costs,and life cycle greenhouse gas emissions data for the current and proposed heat sources.Preferred scenarios are identifi ed and evaluated by building type,construction decade,and current heating source.The results are then placed within the contexts of the Vaasa building stock and policy theory.展开更多
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
文摘By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different heating ways,to provide references for choosing a suitable heating way in the local area.
文摘A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existing heating building data based on traditional heating design already adopted by engineering firms in Jordan. The traditional heating load was transferred into electrical load to be supplied by hybrid system. The hybrid system consists of a 75 kW vertical axis windmill and 140 solar modules. Because of the high cost of land in residential buildings, the hybrid system is to be installed on the building roof. The hybrid system and the conventional systems' cost were found to be compatible in four years period when oil prices reach $100 per barrel. As the international price of oil rises above $100 per barrel, the proposed hybrid system becomes more economical than the already existing hot water heating system.
文摘Building simulation is a powerful way to evaluate the performance of a building.The quality of simulation results however strongly depends on the accuracy of simulation input data.Especially for weather data files and occupant behaviour it is difficult to obtain accurate data.This paper evaluates the variability of building simulation results with regards to different weather data sets as well as different heating and cooling set points for a residential building in Victoria,Australia.Thermal comfort accord-ing to ASHRAE Standard 55,final energy consumption and peak cooling and heating loads are assessed.Simulations have been performed with Energy-Plus,and weather data for a multi-year approach have been generated with the software Meteonorm.The results show that different weather files for the same location as well as different conditioning set points can influence the results by approximately a factor of 2.
文摘Given the growing interest in ground source heat pump and distributed heating installations in general for the reduction of greenhouse gas emissions,technology implementation planning can benefit from the simultaneous consideration of building renovations.Here,a method for identifying and evaluating scenarios based on cost and greenhouse gas emissions is presented.The method is demonstrated for a case study in Vaasa Finland.The case study considers the insulation of the walls,roof,and base floor and the replacement of windows based on 2003 and 2010 Finnish building codes simultaneously with the possible replacement of existing heat sources with ground source heat pumps.Estimates of changes in heat demand for consecutive renovations are combined with data on renovation,installation,heating costs,and life cycle greenhouse gas emissions data for the current and proposed heat sources.Preferred scenarios are identifi ed and evaluated by building type,construction decade,and current heating source.The results are then placed within the contexts of the Vaasa building stock and policy theory.