期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Study of deep transportation and plugging performance of deformable gel particles in porous media
1
作者 Wen-Jing Zhao Jing Wang +1 位作者 Zhong-Yang Qi Hui-Qing Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期962-973,共12页
Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen... Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement. 展开更多
关键词 Physical simulation Deformable gel particle BREAKAGE Particle size residual resistance coefficient
下载PDF
Feasibility Study on Chemical Flooding in Super High Porosity and Permeability Heavy Oil Reservoir 被引量:1
2
作者 Juan Zhao Jian Zhang Guang Yang 《Journal of Materials Science and Chemical Engineering》 2020年第11期43-53,共11页
In this paper, the feasibility study of chemical flooding is carried out for ultra-high porosity and high permeability heavy oil field with permeability higher than 10 μm<sup>2</sup> and porosity greater ... In this paper, the feasibility study of chemical flooding is carried out for ultra-high porosity and high permeability heavy oil field with permeability higher than 10 μm<sup>2</sup> and porosity greater than 35%. The viscosity-concentration relationship of four kinds of oil flooding systems such as hydrolyzed polyacrylamide, structural polymer A, structural polymer B and gel was studied. The results showed that the viscosity of ordinary polymer and structural polymer B was lower compared with other two types of oil displacement agents, and the viscosity of structural polymer A was higher. The higher the concentration, the higher the viscosity retention rate. The gel system has the highest viscosity and best anti-shear ability. The resistance coefficient and residual resistance coefficient of structural polymer A and gel system were further studied. The results show that permeability, velocity and polymer concentration all affect the resistance coefficient and residual resistance coefficient. From the point of view of resistance establishment ability, it is considered that structural polymer A is not suitable for permeability formation above 10 μm<sup>2</sup>. Gel system has stronger ability to establish resistance coefficient than structural polymer A flooding system, and it is more feasible for formation system with permeability above 10 μm<sup>2</sup>. 展开更多
关键词 Super High Porosity and High Permeability Chemical Flooding Viscosity-Concentration Relationship Resistance Coefficient Coefficient of residual Resistance
下载PDF
Effect of Crystallographic Orientation on Quenching Stress during Martensitic Phase Transformation of Carbon Steel Plate 被引量:1
3
作者 潘龙 何闻 GU Bangping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1213-1219,共7页
During quenching, the residual stresses are affected by the crystallographic orientation of martensite, because the nonuniform thermal stresses affect the crystallographic orientation of the lathshaped martensite and ... During quenching, the residual stresses are affected by the crystallographic orientation of martensite, because the nonuniform thermal stresses affect the crystallographic orientation of the lathshaped martensite and induce the anisotropic expansion. To simulate this process, the model of anisotropic transformation induced plasticity(TRIP) was built using the WLR-BM phenomenological theory. The equivalent expansion coefficient was introduced considering the thermal and plastic strains, which simplified the numerical simulation. Furthermore, the quenching residual stresses in carbon steel plates were calculated using the finite element method under ANSYS Workbench simulation environment. To evaluate the simulative results, distributions of residual stresses from the surface to the interior at the center of specimen were measured using the layer-by-layer hole-drilling method. Compared to the measured results, the simulative results considering the anisotropic expansion induced by the crystallographic orientation of martenstic laths were found to be more accurate than those without considering it. 展开更多
关键词 residual stresses martenstic transformation crystallographic orientation transformation induced plasticity expansion coefficient
下载PDF
Evolution of thermo-physical properties of diamond/Cu composite materials under thermal shock load 被引量:1
4
作者 Hong Guo Zhi-Hui Bai +3 位作者 Xi-Min Zhang Fa-Zhang Yin Cheng-Chang Jia Yuan-Yuan Han 《Rare Metals》 SCIE EI CAS CSCD 2014年第2期185-190,共6页
In this paper, the two-flume method was used to study the change laws of the thermal conductivity and thermal expansion coefficient of diamond/Cu composite materials with 100, 300, and 500 cycle numbers, under the act... In this paper, the two-flume method was used to study the change laws of the thermal conductivity and thermal expansion coefficient of diamond/Cu composite materials with 100, 300, and 500 cycle numbers, under the action of thermal shock load between-196 and 85 °C; the X-ray diffraction method(XRD) was used to study the change of the residual stress in the thermal shock process of the diamond/Cu composite materials; and the evolution of the fracture microstructure with different thermal shock cycle numbers was observed through scanning electron microscopy(SEM). The results of the study show that the increase of the binder residue at the interface reduces the thermal shock stability of the diamond/Cu composite materials. In addition, under the thermal shock load between-196 and 85 °C, the residual stress of the diamond/Cu composite materials increases continuously with the increase of the cycle numbers, the increase of residual stress leads to a small amount of interface debonding, an increase of the interfacial thermal resistances, and a decrease of the constraints of low-expansion component on material deformation, thus the thermal conductivity decreases slightly and the thermal expansion coefficient increases slightly. 展开更多
关键词 Diamond/Cu Thermal shock Thermal conductivity Thermal expansion coefficient residual stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部