期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Residual force enhancement due to active muscle lengthening allows similar reductions in neuromuscular activation during position-and force-control tasks
1
作者 Rhiannon Marion Geoffrey A.Power 《Journal of Sport and Health Science》 SCIE 2020年第6期670-676,共7页
Background:Residual torque enhancement(rTE)is the increase in torque observed during the isometric steady state following active muscle lengthening when compared with a fixed-end isometric contraction at the same musc... Background:Residual torque enhancement(rTE)is the increase in torque observed during the isometric steady state following active muscle lengthening when compared with a fixed-end isometric contraction at the same muscle length and level of neuromuscular activation.In the rTE state,owing to an elevated contribution of passive force to total force production,less active force is required,and there is a subsequent reduction in activation.In vivo studies of rTE reporting an activation reduction are often performed using a dynamometer,where participants contract against a rigid restraint,resisting a torque motor.rTE has yet to be investigated during a position task,which involves the displacement of an inertial load with positional control.Methods:A total of 12 participants(6 males,6 females;age=22.8±1.1 years,height=174.7±8.6 cm,mass=82.1±37.7 kg;mean±SD)completed torque-and position-matching tasks at 60%maximum voluntary contraction for a fixed-end isometric contraction and an isometric contraction following active lengthening of the ankle dorsiflexors.Results:There were no significant differences in activation between torque-and position-matching tasks(p=0.743),with^27%activation reduction following active lengthening for both task types(p<0.001).Conclusion:These results indicate that rTE is a feature of voluntary,position-controlled contractions.These findings support and extend previous findings of isometric torque-control conditions to position-controlled contractions that represent different tasks of daily living. 展开更多
关键词 ECCENTRIC ELECTROMYOGRAPHY History dependence of force Position tasks residual force enhancement
下载PDF
Residual Capacity of Friction⁃Type High⁃Strength Bolted T⁃stub Connection with Nut Corrosion Damage
2
作者 Gangnian Xu Baoyao Lin Yefeng Du 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第3期68-84,共17页
Corrosion is a primary cause of the slippage of friction⁃type high⁃strength bolted(FHSB)T⁃stub connections.This paper attempts to quantify the residual capacity of FHSB T⁃stub connections with corroded nuts.Firstly,co... Corrosion is a primary cause of the slippage of friction⁃type high⁃strength bolted(FHSB)T⁃stub connections.This paper attempts to quantify the residual capacity of FHSB T⁃stub connections with corroded nuts.Firstly,corrosion simulation tests were conducted on 48 manually cut nuts to find out the relationship between the damage degree of nut section and the residual clamping force(RCF)of bolt.Then,static load tests were carried out on 24 FHSB T⁃stub connections with nuts of different degrees of damage to obtain the failure modes.By finite⁃element(FE)models,a comparative analysis was performed on the initial friction load(IFL)and ultimate strength(US)of each connection with corroded nuts.Finally,the parameters of 96 FE models for FHSB T⁃stub connections were analyzed and used to derive the calculation formulas for the degree of damage for each nut and the IFL and US of each connection.The results show that the RCF decay of a bolt is a quadratic function of the equivalent radius loss ratio and the shear failure after nut corrosion;the IFL of each connection had a clear linear correlation with the RCF of the corresponding bolts,and the correlation depends on the applied load and static friction on connecting plate interface induced by the clamping force;the static friction had little impact on the US of the connection;the proposed IFL and US formulas can effectively derive the residual anti⁃slip capacity of FHSB T⁃stub connections from the degree of damage of the corroded nut section.The research results provide a scientific basis for the replacement and maintenance of corroded bolts of FHSB T⁃stub connections. 展开更多
关键词 nut corrosion T⁃stub connection high⁃strength bolt sectional damage residual clamping force(RCF) anti⁃slip capacity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部