期刊文献+
共找到202,057篇文章
< 1 2 250 >
每页显示 20 50 100
Structural and microwave absorption properties of CoFe_(2)O_(4)/residual carbon composites
1
作者 Yuanchun Zhang Shengtao Gao +3 位作者 Xingzhao Zhang Dacheng Ma Chuanlei Zhu Jun He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期221-232,共12页
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_... Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality. 展开更多
关键词 coal gasification slag residual carbon hydrothermal method microwave absorption CoFe_(2)O_(4)
下载PDF
Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network 被引量:1
2
作者 Arnab Dey Samit Biswas Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2024年第5期3067-3087,共21页
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i... Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis. 展开更多
关键词 workout action recognition video stream action recognition residual network GRU ATTENTION
下载PDF
Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network
3
作者 Tingting Su Jia Wang +2 位作者 Wei Hu Gaoqiang Dong Jeon Gwanggil 《Computers, Materials & Continua》 SCIE EI 2024年第6期4433-4448,共16页
Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportati... Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic fields.The introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network security.Insufficient feature extraction leads to less accurate classification results.In abnormal traffic detection,the data of network traffic is high-dimensional and complex.This data not only increases the computational burden of model training but also makes information extraction more difficult.To address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection.To fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is introduced.This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field.The proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual block.This module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information redundancy.Experimental results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%. 展开更多
关键词 Abnormal network traffic deep learning residual network multi-scale feature extraction max-feature-map
下载PDF
Attention-Based Residual Dense Shrinkage Network for ECG Denoising
4
作者 Dengyong Zhang Minzhi Yuan +3 位作者 Feng Li Lebing Zhang Yanqiang Sun Yiming Ling 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2809-2824,共16页
Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec... Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal. 展开更多
关键词 Electrocardiogram signal denoising signal-to-noise ratio attention-based residual dense shrinkage network MIT-BIH
下载PDF
Radar Signal Intra-Pulse Modulation Recognition Based on Deep Residual Network
5
作者 Fuyuan Xu Guangqing Shao +3 位作者 Jiazhan Lu Zhiyin Wang Zhipeng Wu Shuhang Xia 《Journal of Beijing Institute of Technology》 EI CAS 2024年第2期155-162,共8页
In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intr... In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB). 展开更多
关键词 intra-pulse modulation low signal-to-noise deep residual network automatic recognition
下载PDF
Mural Anomaly Region Detection Algorithm Based on Hyperspectral Multiscale Residual Attention Network
6
作者 Bolin Guo Shi Qiu +1 位作者 Pengchang Zhang Xingjia Tang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1809-1833,共25页
Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as b... Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection. 展开更多
关键词 MURALS anomaly detection HYPERSPECTRAL 3D CNN(Convolutional Neural Networks) residual network
下载PDF
An Experimental Artificial Neural Network Model:Investigating and Predicting Effects of Quenching Process on Residual Stresses of AISI 1035 Steel Alloy
7
作者 Salman Khayoon Aldriasawi Nihayat Hussein Ameen +3 位作者 Kareem Idan Fadheel Ashham Muhammed Anead Hakeem Emad Mhabes Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期78-92,共15页
The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array ... The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035. 展开更多
关键词 QUENCHING nanofluids residual stresses steel alloy artificial neural network MANOVA
下载PDF
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
8
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 Automatic modulation recognition Radiation source signals Two-dimensional data matrix residual neural network Depthwise convolution
下载PDF
Privacy Preservation in IoT Devices by Detecting Obfuscated Malware Using Wide Residual Network
9
作者 Deema Alsekait Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第11期2395-2436,共42页
The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability t... The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks.Further,the study suggests using an advanced approach that utilizes machine learning,specifically the Wide Residual Network(WRN),to identify hidden malware in IoT systems.The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices,using the MalMemAnalysis dataset.Moreover,thorough experimentation provides evidence for the effectiveness of the WRN-based strategy,resulting in exceptional performance measures such as accuracy,precision,F1-score,and recall.The study of the test data demonstrates highly impressive results,with a multiclass accuracy surpassing 99.97%and a binary class accuracy beyond 99.98%.The results emphasize the strength and dependability of using advanced deep learning methods such as WRN for identifying hidden malware risks in IoT environments.Furthermore,a comparison examination with the current body of literature emphasizes the originality and efficacy of the suggested methodology.This research builds upon previous studies that have investigated several machine learning methods for detecting malware on IoT devices.However,it distinguishes itself by showcasing exceptional performance metrics and validating its findings through thorough experimentation with real-world datasets.Utilizing WRN offers benefits in managing the intricacies of malware detection,emphasizing its capacity to enhance the security of IoT ecosystems.To summarize,this work proposes an effective way to address privacy concerns on IoT devices by utilizing advanced machine learning methods.The research provides useful insights into the changing landscape of IoT cybersecurity by emphasizing methodological rigor and conducting comparative performance analysis.Future research could focus on enhancing the recommended approach by adding more datasets and leveraging real-time monitoring capabilities to strengthen IoT devices’defenses against new cybersecurity threats. 展开更多
关键词 Obfuscated malware detection IoT devices Wide residual Network(WRN) malware detection machine learning
下载PDF
A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection
10
作者 Lanyao Zhang Shichao Kan +3 位作者 Yigang Cen Xiaoling Chen Linna Zhang Yansen Huang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1631-1648,共18页
Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately ... Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods. 展开更多
关键词 Anomaly detection normalizing flow source domain feature space target domain feature space bidirectional mapping residual network
下载PDF
Multi-scale Attention Dilated Residual Image Denoising Network Based on Skip Connection
11
作者 Zhiting Du Xianchun Zhou +2 位作者 Mengnan Lv Yuze Chen Binxin Tang 《Instrumentation》 2024年第3期41-53,共13页
In the field of image denoising, deep learning technology holds a dominance. However, the current network model tends to lose fine-grained information with the depth of the network. To address this issue, this paper p... In the field of image denoising, deep learning technology holds a dominance. However, the current network model tends to lose fine-grained information with the depth of the network. To address this issue, this paper proposes a Multi-scale Attention Dilated Residual Image Denoising Network(MADRNet) based on skip connection, which consists of Dense Interval Transmission Block(DTB), Sparse Residual Block(SRB), Dilated Residual Attention Reconstruction Block(DRAB) and Noise Extraction Block(NEB). The DTB enhances the classical dense layer by reducing information redundancy and extracting more accurate feature information. Meanwhile, SRB improves feature information exchange and model generalization through the use of sparse mechanism and skip connection strategy with different expansion factors. The NEB is primarily responsible for extracting and estimating noise. Its output, together with that of the sparse residual module, acts on the DRAB to effectively prevent loss of shallow feature information and improve denoising effect. Furthermore, the DRAB integrates an dilated residual block into an attention mechanism to extract hidden noise information while using residual learning technology to reconstruct clear images. We respectively examined the performance of MADRNet in gray image denoising, color image denoising and real image denoising. The experiment results demonstrate that proposed network outperforms some excellent image denoising network in terms of peak signal-to-noise ratio, structural similarity index measurement and denoising time. The proposed network effectively addresses issues associated with the loss of detail information. 展开更多
关键词 image denoising deep learning dilated residual block sparse residual block
下载PDF
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:6
12
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Residual alkali-evoked cross-linked polymer layer for anti-air-sensitivity LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)cathode 被引量:1
13
作者 Chao Zhao Xuebao Li +7 位作者 Yun Zhao Jingjing He Yuanpeng Cao Wei Luo Ding Wang Jianguo Duan Xianshu Wang Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期450-458,共9页
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M... High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs. 展开更多
关键词 Lithium-ion batteries Nickel-rich layered cathode residual alkalis Cross-linked polyme rmodification Airsensitivity
下载PDF
Antagonism effect of residual S triggers the dual-path mechanism for water oxidation 被引量:1
14
作者 Li Liu Jinming Cao +5 位作者 Siqi Hu Tinghui Liu Can Xu Wensheng Fu Xinguo Ma Xiaohui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期568-579,I0014,共13页
Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of ... Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability. 展开更多
关键词 Electrochemical reconstruction Adsorbate evolution mechanism Lattice oxygen oxidation mechanism Oxygen evolution reaction residual sulfur
下载PDF
Prediction of the residual strength of clay using functional networks 被引量:6
15
作者 S.Z.Khan Shakti Suman +1 位作者 M.Pavani S.K.Das 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期67-74,共8页
Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of s... Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output. 展开更多
关键词 LANDSLIDES residual strength Index properties Prediction model Functional networks
下载PDF
Neural Network Ensemble Residual Kriging Application for Spatial Variability of Soil Properties 被引量:37
16
作者 SHENZhang-Quan SHIJie-Bin +2 位作者 WANGKe KONGFan-Sheng J.S.BAILEY 《Pedosphere》 SCIE CAS CSCD 2004年第3期289-296,共8页
High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the c... High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the capability of interpolating soil properties based on neural network ensemble residual kriging, a silage field at Hayes, Northern Ireland, UK, was selected for this study with all samples being split into independent training and validation data sets. The training data set, comprised of five soil properties: soil pH, soil available P, soil available K, soil available Mg and soil available S,was modeled for spatial variability using 1) neural network ensemble residual kriging, 2) neural network ensemble and 3) kriging with their accuracies being estimated by means of the validation data sets. Ordinary kriging of the residuals provided accurate local estimates, while final estimates were produced as a sum of the artificial neural network (ANN)ensemble estimates and the ordinary kriging estimates of the residuals. Compared to kriging and neural network ensemble,the neural network ensemble residual kriging achieved better or similar accuracy for predicting and estimating contour maps. Thus, the results demonstrated that ANN ensemble residual kriging was an efficient alternative to the conventional geo-statistical models that were usually used for interpolation of a data set in the soil science area. 展开更多
关键词 KRIGING neural networks ensemble residual soil properties SPATIALVARIABILITY
下载PDF
Slice-wise reconstruction for low-dose cone-beam CT using a deep residual convolutional neural network 被引量:4
17
作者 Hong-Kai Yang Kai-Chao Liang +1 位作者 Ke-Jun Kang Yu-Xiang Xing 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第4期53-61,共9页
Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp ... Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp to reduce noise and keep resolution at low doses. A typical method to solve this problem is using optimizationbased methods with careful modeling of physics and additional constraints. However, it is computationally expensive and very time-consuming to reach an optimal solution. Recently, some pioneering work applying deep neural networks had some success in characterizing and removing artifacts from a low-dose data set. In this study,we incorporate imaging physics for a cone-beam CT into a residual convolutional neural network and propose a new end-to-end deep learning-based method for slice-wise reconstruction. By transferring 3D projection to a 2D problem with a noise reduction property, we can not only obtain reconstructions of high image quality, but also lower the computational complexity. The proposed network is composed of three serially connected sub-networks: a cone-to-fan transformation sub-network, a 2D analytical inversion sub-network, and an image refinement sub-network. This provides a comprehensive solution for end-to-end reconstruction for CBCT. The advantages of our method are that the network can simplify a 3D reconstruction problem to a 2D slice-wise reconstruction problem and can complete reconstruction in an end-to-end manner with the system matrix integrated into the network design. Furthermore, reconstruction can be less computationally expensive and easily parallelizable compared with iterative reconstruction methods. 展开更多
关键词 CONE-BEAM CT Slice-wise residual U-net Low dose Image DENOISING
下载PDF
Radar emitter multi-label recognition based on residual network 被引量:10
18
作者 Yu Hong-hai Yan Xiao-peng +2 位作者 Liu Shao-kun Li Ping Hao Xin-hong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期410-417,共8页
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and... In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs. 展开更多
关键词 Radar emitter recognition Image processing PARALLEL residual network MULTI-LABEL
下载PDF
Influences of Tool Wear on Residual Stress and Fatigue Life of Workpiece in Hard Cutting Process 被引量:1
19
作者 Caixu Yue Lei Zhu +3 位作者 Lei Feng Jun Liu Shengyu Hao Guangxu Ren 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第5期61-69,共9页
Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die... Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die steel Cr12 MoV was studied by using PCBN tool with considering tool wear. Based on the numerical treatment of residual stress,the dispersion and distribution curves of different tool wear were fitted,and the influence mechanism of tool wear on the residual stress distribution of machined surface was analyzed.Based on the theory of fatigue mechanics and mathematical statistics,the mathematical model for difference of stress dispersion and fatigue life was established. The rotating and bending tests were carried out on the standard parts after cutting process for the workpiece. The influence of tool wear on fatigue life was revealed by fracture surface morphology and fatigue life study. The results provide theoretical support for control of residual stress and the fatigue property of the machined surface under the actual working conditions. 展开更多
关键词 hard TURNING PROCESS tool wear surface residual STRESS residual STRESS dispersion fatigue life
下载PDF
Multi-Residual Module Stacked Hourglass Networks for Human Pose Estimation 被引量:6
20
作者 Wenxia Bao Yaping Yang +1 位作者 Dong Liang Ming Zhu 《Journal of Beijing Institute of Technology》 EI CAS 2020年第1期110-119,共10页
A multi-residual module stacked hourglass network(MRSH)was proposed to improve the accuracy and robustness of human body pose estimation.The network uses multiple hourglass sub-networks and three new residual modules.... A multi-residual module stacked hourglass network(MRSH)was proposed to improve the accuracy and robustness of human body pose estimation.The network uses multiple hourglass sub-networks and three new residual modules.In the hourglass sub-network,the large receptive field residual module(LRFRM)and the multi-scale residual module(MSRM)are first used to learn the spatial relationship between features and body parts at various scales.Only the improved residual module(IRM)is used when the resolution is minimized.The final network uses four stacked hourglass sub-networks,with intermediate supervision at the end of each hourglass,repeating high-low(from high resolution to low resolution)and low-high(from low resolution to high resolution)learning.The network was tested on the public datasets of Leeds sports poses(LSP)and MPII human pose.The experimental results show that the proposed network has better performance in human pose estimation. 展开更多
关键词 human POSE estimation residual learning image FEATURE HOURGLASS network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部