期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于综合灰关联序模型的残差门控循环神经网络位标器零部件选配 被引量:3
1
作者 钟百鸿 王琳 钟诗胜 《中国机械工程》 EI CAS CSCD 北大核心 2021年第3期314-320,356,共8页
位标器漂移性能是决定精确制导武器跟踪能力与制导精度的关键因素之一,通过位标器零部件选配可改善位标器漂移性能。针对位标器零部件一次选配成功率低的问题,提出综合灰关联序(CGRO)模型并对影响位标器零部件选配的装配参数进行关联分... 位标器漂移性能是决定精确制导武器跟踪能力与制导精度的关键因素之一,通过位标器零部件选配可改善位标器漂移性能。针对位标器零部件一次选配成功率低的问题,提出综合灰关联序(CGRO)模型并对影响位标器零部件选配的装配参数进行关联分析,得到了影响位标器零部件选配的关键装配参数;建立残差门控循环神经网络(RNGRU)模型,实现了位标器零部件的选配。以影响位标器漂移性能的陀螺转子与调漂螺钉装配为例,应用CGRO模型对陀螺转子的装配参数进行关联分析,得到了影响两者装配的关键装配参数;基于RNGRU模型实现了对调漂螺钉质量的回归预测。实验结果表明,所提方法能够实现位标器零部件的选配,其预测精度优于传统门控循环神经网络。 展开更多
关键词 位标器 选配 综合灰关联序 残差门控循环神经网络
下载PDF
A Multitime-scale Deep Learning Model for Lithium-ion Battery Health Assessment Using Soft Parameter-sharing Mechanism
2
作者 Lulu Wang Kun Zheng +4 位作者 Yijing Li Zhipeng Yang Feifan Zhou Jia Guo Jinhao Meng 《Chinese Journal of Electrical Engineering》 EI 2024年第3期1-11,共11页
Efficient assessment of battery degradation is important to effectively utilize and maintain battery management systems.This study introduces an innovative residual convolutional network(RCN)-gated recurrent unit(GRU)... Efficient assessment of battery degradation is important to effectively utilize and maintain battery management systems.This study introduces an innovative residual convolutional network(RCN)-gated recurrent unit(GRU)model to accurately assess health of lithium-ion batteries on multiple time scales.The model employs a soft parameter-sharing mechanism to identify both short-d dT and long-term degradation patterns.The continuously looped(V),T(V),dQ/dV and dT/dV are extracted to form a four-channel image,dV dV from which the RCN can automatically extract the features and the GRU can capture the temporal features.By designing a soft parameter-sharing mechanism,the model can seamlessly predict the capacity and remaining useful life(RUL)on a dual time scale.The proposed method is validated on a large MIT-Stanford dataset comprising 124 cells,showing a high accuracy in terms of mean absolute errors of 0.00477 for capacity and 83 for RUL.Furthermore,studying the partial voltage fragment reveals the promising performance of the proposed method across various voltage ranges.Specifically,in the partial voltage segment of 2.8-3.2 V,root mean square errors of 0.0107 for capacity and 140 for RUL are achieved. 展开更多
关键词 residual convolutional network-gated recurrent unit capacity estimation soft parameter sharing remaining useful life prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部