Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.展开更多
COVID-19 is the common name of the disease caused by the novel coronavirus(2019-nCoV)that appeared in Wuhan,China in 2019.Discovering the infected people is the most important factor in the fight against the disease.T...COVID-19 is the common name of the disease caused by the novel coronavirus(2019-nCoV)that appeared in Wuhan,China in 2019.Discovering the infected people is the most important factor in the fight against the disease.The gold-standard test to diagnose COVID-19 is polymerase chain reaction(PCR),but it takes 5–6 h and,in the early stages of infection,may produce false-negative results.Examining Computed Tomography(CT)images to diagnose patients infected with COVID-19 has become an urgent necessity.In this study,we propose a residual attention deep support vector data description SVDD(RADSVDD)approach to diagnose COVID-19.It is a novel approach combining residual attention with deep support vector data description(DSVDD)to classify the CT images.To the best of our knowledge,we are the first to combine residual attention with DSVDD in general,and specifically in the diagnosis of COVID-19.Combining attention with DSVDD naively may cause model collapse.Attention in the proposed RADSVDD guides the network during training and enables quick learning,residual connectivity prevents vanishing gradients.Our approach consists of three models,each model is devoted to recognizing one certain disease and classifying other diseases as anomalies.These models learn in an end-to-end fashion.The proposed approach attained high performance in classifying CT images into intact,COVID-19,and non-COVID-19 pneumonia.To evaluate the proposed approach,we created a dataset from published datasets and had it assessed by an experienced radiologist.The proposed approach achieved high performance,with the normal model attained sensitivity(0.96–0.98),specificity(0.97–0.99),F1-score(0.97–0.98),and area under the receiver operator curve(AUC)0.99;the COVID-19 model attained sensitivity(0.97–0.98),specificity(0.97–0.99),F1-score(0.97–0.99),and AUC 0.99;and the non-COVID pneumoniamodel attained sensitivity(0.97–1),specificity(0.98–0.99),F1-score(0.97–0.99),and AUC 0.99.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only cha...Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only channel or spatial information,and cannot make full use of both channel and spatial information to improve SISR performance further.The present work addresses this problem by proposing a mixed attention densely residual network architecture that can make full and simultaneous use of both channel and spatial information.Specifically,we propose a residual in dense network structure composed of dense connections between multiple dense residual groups to form a very deep network.This structure allows each dense residual group to apply a local residual skip connection and enables the cascading of multiple residual blocks to reuse previous features.A mixed attention module is inserted into each dense residual group,to enable the algorithm to fuse channel attention with laplacian spatial attention effectively,and thereby more adaptively focus on valuable feature learning.The qualitative and quantitative results of extensive experiments have demonstrate that the proposed method has a comparable performance with other stateof-the-art methods.展开更多
In computer vision,object recognition and image categorization have proven to be difficult challenges.They have,nevertheless,generated responses to a wide range of difficult issues from a variety of fields.Convolution...In computer vision,object recognition and image categorization have proven to be difficult challenges.They have,nevertheless,generated responses to a wide range of difficult issues from a variety of fields.Convolution Neural Networks(CNNs)have recently been identified as the most widely proposed deep learning(DL)algorithms in the literature.CNNs have unquestionably delivered cutting-edge achievements,particularly in the areas of image classification,speech recognition,and video processing.However,it has been noticed that the CNN-training assignment demands a large amount of data,which is in low supply,especially in the medical industry,and as a result,the training process takes longer.In this paper,we describe an attentionaware CNN architecture for classifying chest X-ray images to diagnose Pneumonia in order to address the aforementioned difficulties.AttentionModules provide attention-aware properties to the Attention Network.The attentionaware features of various modules alter as the layers become deeper.Using a bottom-up top-down feedforward structure,the feedforward and feedback attention processes are integrated into a single feedforward process inside each attention module.In the present work,a deep neural network(DNN)is combined with an attention mechanism to test the prediction of Pneumonia disease using chest X-ray pictures.To produce attention-aware features,the suggested networkwas built by merging channel and spatial attentionmodules in DNN architecture.With this network,we worked on a publicly available Kaggle chest X-ray dataset.Extensive testing was carried out to validate the suggested model.In the experimental results,we attained an accuracy of 95.47%and an F-score of 0.92,indicating that the suggested model outperformed against the baseline models.展开更多
文摘Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.
文摘COVID-19 is the common name of the disease caused by the novel coronavirus(2019-nCoV)that appeared in Wuhan,China in 2019.Discovering the infected people is the most important factor in the fight against the disease.The gold-standard test to diagnose COVID-19 is polymerase chain reaction(PCR),but it takes 5–6 h and,in the early stages of infection,may produce false-negative results.Examining Computed Tomography(CT)images to diagnose patients infected with COVID-19 has become an urgent necessity.In this study,we propose a residual attention deep support vector data description SVDD(RADSVDD)approach to diagnose COVID-19.It is a novel approach combining residual attention with deep support vector data description(DSVDD)to classify the CT images.To the best of our knowledge,we are the first to combine residual attention with DSVDD in general,and specifically in the diagnosis of COVID-19.Combining attention with DSVDD naively may cause model collapse.Attention in the proposed RADSVDD guides the network during training and enables quick learning,residual connectivity prevents vanishing gradients.Our approach consists of three models,each model is devoted to recognizing one certain disease and classifying other diseases as anomalies.These models learn in an end-to-end fashion.The proposed approach attained high performance in classifying CT images into intact,COVID-19,and non-COVID-19 pneumonia.To evaluate the proposed approach,we created a dataset from published datasets and had it assessed by an experienced radiologist.The proposed approach achieved high performance,with the normal model attained sensitivity(0.96–0.98),specificity(0.97–0.99),F1-score(0.97–0.98),and area under the receiver operator curve(AUC)0.99;the COVID-19 model attained sensitivity(0.97–0.98),specificity(0.97–0.99),F1-score(0.97–0.99),and AUC 0.99;and the non-COVID pneumoniamodel attained sensitivity(0.97–1),specificity(0.98–0.99),F1-score(0.97–0.99),and AUC 0.99.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62063004 and 61762033in part by the Hainan Provincial Natural Science Foundation of China under Grant 2019RC018 and 619QN246by the Postdoctoral Science Foundation under Grant 2020TQ0293.
文摘Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only channel or spatial information,and cannot make full use of both channel and spatial information to improve SISR performance further.The present work addresses this problem by proposing a mixed attention densely residual network architecture that can make full and simultaneous use of both channel and spatial information.Specifically,we propose a residual in dense network structure composed of dense connections between multiple dense residual groups to form a very deep network.This structure allows each dense residual group to apply a local residual skip connection and enables the cascading of multiple residual blocks to reuse previous features.A mixed attention module is inserted into each dense residual group,to enable the algorithm to fuse channel attention with laplacian spatial attention effectively,and thereby more adaptively focus on valuable feature learning.The qualitative and quantitative results of extensive experiments have demonstrate that the proposed method has a comparable performance with other stateof-the-art methods.
基金supported by the Fundamental Research Funds for the Central Universities (No.2022JCCXMT01)the National College Students’Innovation and Entrepreneurship Training Program Automatic Recognition of Earthquake Faults Based on Convolutional Neural Networks (No.20220236)the Open Fund of State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources (No.SKLCRSM22DC02).
文摘In computer vision,object recognition and image categorization have proven to be difficult challenges.They have,nevertheless,generated responses to a wide range of difficult issues from a variety of fields.Convolution Neural Networks(CNNs)have recently been identified as the most widely proposed deep learning(DL)algorithms in the literature.CNNs have unquestionably delivered cutting-edge achievements,particularly in the areas of image classification,speech recognition,and video processing.However,it has been noticed that the CNN-training assignment demands a large amount of data,which is in low supply,especially in the medical industry,and as a result,the training process takes longer.In this paper,we describe an attentionaware CNN architecture for classifying chest X-ray images to diagnose Pneumonia in order to address the aforementioned difficulties.AttentionModules provide attention-aware properties to the Attention Network.The attentionaware features of various modules alter as the layers become deeper.Using a bottom-up top-down feedforward structure,the feedforward and feedback attention processes are integrated into a single feedforward process inside each attention module.In the present work,a deep neural network(DNN)is combined with an attention mechanism to test the prediction of Pneumonia disease using chest X-ray pictures.To produce attention-aware features,the suggested networkwas built by merging channel and spatial attentionmodules in DNN architecture.With this network,we worked on a publicly available Kaggle chest X-ray dataset.Extensive testing was carried out to validate the suggested model.In the experimental results,we attained an accuracy of 95.47%and an F-score of 0.92,indicating that the suggested model outperformed against the baseline models.