In this paper,we analyze the stress and electric field intensity factors affected by residual surface stress for conducting cracks in piezoelectric nanomaterials.The problem is reduced to a system of non-linear singul...In this paper,we analyze the stress and electric field intensity factors affected by residual surface stress for conducting cracks in piezoelectric nanomaterials.The problem is reduced to a system of non-linear singular integral equations,whose solution is determined by iteration technique.Numerical results indicate that the residual surface stress can significantly alter the crack tip fields at nanometer length scales.Due to the residual surface stress,281he electric field can produce stress around crack tip.This suggests a strong electromechanical coupling crack tip field for nanoscale piezoelectric materials.Such a finding is considerably different from the classical fracture mechanics results.A transit electric field to stress load ratio is identified,for which influences of residual surface stresses vanish.The research is useful for the applications of nanoscale piezoelectric devices.展开更多
A new continuum model is developed to study the influence of surface stress on the behaviors of piezoelectric nanobeams. Different from existing piezoelectric surface models which only consider the surface properties,...A new continuum model is developed to study the influence of surface stress on the behaviors of piezoelectric nanobeams. Different from existing piezoelectric surface models which only consider the surface properties, the proposed model takes surfaceinduced initial fields into consideration. Due to the fact that the surface-induced initial fields are totally different under various boundary conditions, two kinds of beams, the doubly-clamped beam and the cantilever beam, are analyzed. Furthermore, boundary conditions can affect not only the initial state of the piezoelectric nanobeam but also the forms of the governing equations. Based on the Euler-Bernoulli beam theory, the nonlin- ear Green-Lagrangian strain-displacement relationship is applied. In addition, the surface area change is also considered in the proposed model. The governing equations of the doubly-clamped and cantilever beams are derived by the energy variation principle. Com- pared with existing Young-Laplace models, the proposed model for the doubly-clamped beam is similar to the Young-Laplace models. However~ the governing equation of the cantilever beam derived by the proposed model is very different from that derived by the Young-Laplace models. The behaviors of piezoelectric nanobeams predicted by these two models Mso have significant discrepancies, which is owing to the surface-induced initial fields in the bulk beam.展开更多
In this current work,aluminum alloy grade 2024 is adopted as a plate material that is used in the rolling process with three different parameters including thickness reduction,forming temperature,and density of lubric...In this current work,aluminum alloy grade 2024 is adopted as a plate material that is used in the rolling process with three different parameters including thickness reduction,forming temperature,and density of lubrication type.The experimental procedure of the rolling process is performed using the design of the experiment based on the Taguchi technique(L27),then surface roughness,surface hardness,and surface residual stresses are measured.The results showed that the lubrication density has a significant impact on the surface roughness which depends on the lubrication properties(mineral oil type,natural fat,and kinematic viscosity)while surface hardness and surface residual stresses were strongly affected by thickness reduction.On the other side,the augment in forming temperature can decrease the quality of the final surface finish and the surface hardness but reduce the induced residual stresses.The best surface finish is obtained based on the optimum condition of the rolling factors are(R%_(3),T_(1),andρ_(3))while the optimum condition of rolling parameters that generate higher hardness and compressive residual stresses are(R%_(3)T_(1)ρ_(1)).展开更多
Within the context of Gurtin-Murdoch surface elasticity theory,closed-form analytical solutions are derived for an isotropic elastic half-plane subjected to a concentrated/uniform surface load.Both the effects of resi...Within the context of Gurtin-Murdoch surface elasticity theory,closed-form analytical solutions are derived for an isotropic elastic half-plane subjected to a concentrated/uniform surface load.Both the effects of residual surface stress and surface elasticity are included.Airy stress function method and Fourier integral transform technique are used.The solutions are provided in a compact manner that can easily reduce to special situations that take into account either one surface effect or none at all.Numerical results indicate that surface effects generally lower the stress levels and smooth the deformation profiles in the half-plane.Surface elasticity plays a dominant role in the in-plane elastic fields for a tangentially loaded half-plane,while the effect of residual surface stress is fundamentally crucial for the out-of-plane stress and displacement when the half-plane is normally loaded.In the remaining situations,combined effects of surface elasticity and residual surface stress should be considered.The results for a concentrated surface force serve essentially as fundamental solutions of the Flamant and the half-plane Cerruti problems with surface effects.The solutions presented in this work may be helpful for understanding the contact behaviors between solids at the nanoscale.展开更多
This study is directed towards a comprehensive exploration on the deformation mechanism of the thin membrane transducer(TMT) caused by surface stress variation.We stress that the biomolecular interaction has changed...This study is directed towards a comprehensive exploration on the deformation mechanism of the thin membrane transducer(TMT) caused by surface stress variation.We stress that the biomolecular interaction has changed the magnitude of the surface stress;and when the surface stress exceeds a critical value the TMT will buckle and deform.Based upon Gurtin's theory of surface elasticity and principle of finite deformation,we abstract the TMT as a nanobeam with two clamped ends,and the close-formed governing equation set is derived accordingly.A computer code via the shooting method is developed to solve the presented two-point boundary value problem.In succession,the nanobeam deflection and critical parameters for buckling are quantitatively discussed.This investigation lays the theoretical foundation of TMTs;and it is also beneficial to gain deep insight into characterizing mechanical properties of nanomaterials and engineering nano-devices.展开更多
Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in th...Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in the machining process of the fan blade is studied in this paper.The fan blades of Ti-6Al-4V are targeted for milling,polishing,heat treatment,vibratory finishing,and shot peening.The surface and subsurface residual stress after each process is measured by the X-ray diffraction method.The distribution of the surface and subsurface residual stress is analyzed.The Rational Taylor surface function and cosine decay function are used to fit the characteristic function of the residual stress distribution,and the empirical formula with high fitting accuracy is obtained.The value and distribution of surface and subsurface residual stress vary greatly due to different processing techniques.The reconstructive change of the surface and subsurface residual stress of the blade in each process intuitively shows the change of the residual stress between the processes,which has a high reference significance for the research on the residual stress of the blade processing and the optimization of the entire blade process.展开更多
In this study, shot peening is applied to the titanium alloy Ti–6Al–4V, and the surface treatment effect on fatigue life of shot-peened specimens under high cycle loading is investigated. The induced residual stress...In this study, shot peening is applied to the titanium alloy Ti–6Al–4V, and the surface treatment effect on fatigue life of shot-peened specimens under high cycle loading is investigated. The induced residual stress is measured by using the orbital hole-drilling method. Surface profilometer and optical microscopy are employed to characterize the surface roughness and morphology. The deformed microstructure layers of the shot-peened specimens are investigated by using scanning electron microscopy. Experiments reveal that the fatigue life of Ti–6Al–4V is improved by the shot peening process, and the surface pre-peening polishing. The combination of pre-and post-peening polishing treatments further improves fatigue life of Ti–6Al–4V specimens. The present work provides useful guidelines for developing more efficient shot peening strategies.展开更多
The serrated plastic flow,microstructure and residual stress of a Zr_(55)Cu_(30)Ni_5Al_(10) bulk metallic glass(BMG)undergone surface mechanical attrition treatment(SMAT)have been investigated by a combinati...The serrated plastic flow,microstructure and residual stress of a Zr_(55)Cu_(30)Ni_5Al_(10) bulk metallic glass(BMG)undergone surface mechanical attrition treatment(SMAT)have been investigated by a combination of compression tests with scanning electron microscopy(SEM),high resolution transmission electron microscopy(HRTEM)and the incremental hole-drilling strain-gage method.It is found that SMAT leads to various microstructural modifications and residual stress distribution in the surface layers of the Zrbased BMG due to the mechanically-induced nanocrystallization and generation of shear bands.As a result,the BMG alloy exhibits a remarkable work-hardening like behavior and significant increase of plastic strain from less than 1%to 15%,and its plastic deformation dynamics yields a power-law distribution of shear avalanches.Based upon the analysis of the experimental results,it is indicated that this can be connected to the SMAT-induced microstructural modifications and the resulting residual compressive stress in the Zr-based BMG.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11172081 and 11372086)Shenzhen Research Innovation Fund,China(Grant No.JCYJ20120613150312764)
文摘In this paper,we analyze the stress and electric field intensity factors affected by residual surface stress for conducting cracks in piezoelectric nanomaterials.The problem is reduced to a system of non-linear singular integral equations,whose solution is determined by iteration technique.Numerical results indicate that the residual surface stress can significantly alter the crack tip fields at nanometer length scales.Due to the residual surface stress,281he electric field can produce stress around crack tip.This suggests a strong electromechanical coupling crack tip field for nanoscale piezoelectric materials.Such a finding is considerably different from the classical fracture mechanics results.A transit electric field to stress load ratio is identified,for which influences of residual surface stresses vanish.The research is useful for the applications of nanoscale piezoelectric devices.
基金supported by the National Natural Science Foundation of China(Nos.10772106 and 11072138)the Natural Science Foundation of Shanghai(No.15ZR1416100)the Shanghai Leading Academic Discipline Project(No.S30106)
文摘A new continuum model is developed to study the influence of surface stress on the behaviors of piezoelectric nanobeams. Different from existing piezoelectric surface models which only consider the surface properties, the proposed model takes surfaceinduced initial fields into consideration. Due to the fact that the surface-induced initial fields are totally different under various boundary conditions, two kinds of beams, the doubly-clamped beam and the cantilever beam, are analyzed. Furthermore, boundary conditions can affect not only the initial state of the piezoelectric nanobeam but also the forms of the governing equations. Based on the Euler-Bernoulli beam theory, the nonlin- ear Green-Lagrangian strain-displacement relationship is applied. In addition, the surface area change is also considered in the proposed model. The governing equations of the doubly-clamped and cantilever beams are derived by the energy variation principle. Com- pared with existing Young-Laplace models, the proposed model for the doubly-clamped beam is similar to the Young-Laplace models. However~ the governing equation of the cantilever beam derived by the proposed model is very different from that derived by the Young-Laplace models. The behaviors of piezoelectric nanobeams predicted by these two models Mso have significant discrepancies, which is owing to the surface-induced initial fields in the bulk beam.
文摘In this current work,aluminum alloy grade 2024 is adopted as a plate material that is used in the rolling process with three different parameters including thickness reduction,forming temperature,and density of lubrication type.The experimental procedure of the rolling process is performed using the design of the experiment based on the Taguchi technique(L27),then surface roughness,surface hardness,and surface residual stresses are measured.The results showed that the lubrication density has a significant impact on the surface roughness which depends on the lubrication properties(mineral oil type,natural fat,and kinematic viscosity)while surface hardness and surface residual stresses were strongly affected by thickness reduction.On the other side,the augment in forming temperature can decrease the quality of the final surface finish and the surface hardness but reduce the induced residual stresses.The best surface finish is obtained based on the optimum condition of the rolling factors are(R%_(3),T_(1),andρ_(3))while the optimum condition of rolling parameters that generate higher hardness and compressive residual stresses are(R%_(3)T_(1)ρ_(1)).
基金supported by the National Natural Science Foundation of China(12272126,12272127)the Doctoral Fund of HPU(B2015-64).
文摘Within the context of Gurtin-Murdoch surface elasticity theory,closed-form analytical solutions are derived for an isotropic elastic half-plane subjected to a concentrated/uniform surface load.Both the effects of residual surface stress and surface elasticity are included.Airy stress function method and Fourier integral transform technique are used.The solutions are provided in a compact manner that can easily reduce to special situations that take into account either one surface effect or none at all.Numerical results indicate that surface effects generally lower the stress levels and smooth the deformation profiles in the half-plane.Surface elasticity plays a dominant role in the in-plane elastic fields for a tangentially loaded half-plane,while the effect of residual surface stress is fundamentally crucial for the out-of-plane stress and displacement when the half-plane is normally loaded.In the remaining situations,combined effects of surface elasticity and residual surface stress should be considered.The results for a concentrated surface force serve essentially as fundamental solutions of the Flamant and the half-plane Cerruti problems with surface effects.The solutions presented in this work may be helpful for understanding the contact behaviors between solids at the nanoscale.
基金Project supported by National Natural Science Foundation of China(Nos.11272357 and 11320003)the Natural Science Fund for Distinguished Young Scholar of Shandong Province(No.JQ201302)
文摘This study is directed towards a comprehensive exploration on the deformation mechanism of the thin membrane transducer(TMT) caused by surface stress variation.We stress that the biomolecular interaction has changed the magnitude of the surface stress;and when the surface stress exceeds a critical value the TMT will buckle and deform.Based upon Gurtin's theory of surface elasticity and principle of finite deformation,we abstract the TMT as a nanobeam with two clamped ends,and the close-formed governing equation set is derived accordingly.A computer code via the shooting method is developed to solve the presented two-point boundary value problem.In succession,the nanobeam deflection and critical parameters for buckling are quantitatively discussed.This investigation lays the theoretical foundation of TMTs;and it is also beneficial to gain deep insight into characterizing mechanical properties of nanomaterials and engineering nano-devices.
基金This work was funded by the National Natural Science Foundation of China(Grant Nos.51875472,91860206,and 51905440)the National Science and Technology Major Project(Grant No.2017-VII-0001-0094)+1 种基金the National Key Research and Development Plan in Shaanxi Province of China(Grant No.2019ZDLGY02-03)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JQ-186).
文摘Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in the machining process of the fan blade is studied in this paper.The fan blades of Ti-6Al-4V are targeted for milling,polishing,heat treatment,vibratory finishing,and shot peening.The surface and subsurface residual stress after each process is measured by the X-ray diffraction method.The distribution of the surface and subsurface residual stress is analyzed.The Rational Taylor surface function and cosine decay function are used to fit the characteristic function of the residual stress distribution,and the empirical formula with high fitting accuracy is obtained.The value and distribution of surface and subsurface residual stress vary greatly due to different processing techniques.The reconstructive change of the surface and subsurface residual stress of the blade in each process intuitively shows the change of the residual stress between the processes,which has a high reference significance for the research on the residual stress of the blade processing and the optimization of the entire blade process.
基金the Aerospace Program and Agency for Science,Technology and Research,Singapore(A*STAR)
文摘In this study, shot peening is applied to the titanium alloy Ti–6Al–4V, and the surface treatment effect on fatigue life of shot-peened specimens under high cycle loading is investigated. The induced residual stress is measured by using the orbital hole-drilling method. Surface profilometer and optical microscopy are employed to characterize the surface roughness and morphology. The deformed microstructure layers of the shot-peened specimens are investigated by using scanning electron microscopy. Experiments reveal that the fatigue life of Ti–6Al–4V is improved by the shot peening process, and the surface pre-peening polishing. The combination of pre-and post-peening polishing treatments further improves fatigue life of Ti–6Al–4V specimens. The present work provides useful guidelines for developing more efficient shot peening strategies.
基金the financial supports provided by National Natural Science Foundation of China(Grant Nos.51171099,50871063)the MOST 973 Program of China(Grant Nos.2015CB856800 and 2012CB932203)
文摘The serrated plastic flow,microstructure and residual stress of a Zr_(55)Cu_(30)Ni_5Al_(10) bulk metallic glass(BMG)undergone surface mechanical attrition treatment(SMAT)have been investigated by a combination of compression tests with scanning electron microscopy(SEM),high resolution transmission electron microscopy(HRTEM)and the incremental hole-drilling strain-gage method.It is found that SMAT leads to various microstructural modifications and residual stress distribution in the surface layers of the Zrbased BMG due to the mechanically-induced nanocrystallization and generation of shear bands.As a result,the BMG alloy exhibits a remarkable work-hardening like behavior and significant increase of plastic strain from less than 1%to 15%,and its plastic deformation dynamics yields a power-law distribution of shear avalanches.Based upon the analysis of the experimental results,it is indicated that this can be connected to the SMAT-induced microstructural modifications and the resulting residual compressive stress in the Zr-based BMG.