Bauxite residue disposal areas(BRDAs)are physically degraded and hostile to plant growth.Nevertheless,natural plant colonization was observed in an abandoned BRDA in Central China.The pioneer plant species at the disp...Bauxite residue disposal areas(BRDAs)are physically degraded and hostile to plant growth.Nevertheless,natural plant colonization was observed in an abandoned BRDA in Central China.The pioneer plant species at the disposal area were identified,whilst distribution characteristics of salt ions such as Na^+,K^+,and Ca^2+in plant tissues and rhizosphere residues were investigated.The mean concentration of exchangeable Na^+in the rhizosphere soils was 19.5 cmol/kg,which suggested that these pioneer plants had relatively high salinity resistance.Sodium content varied from 0.84 cmol/kg(Digitaria sanguinalis)to 39.7 cmol/kg(Kochia scoparia),whilst K to Na ratio varied from 0.71(Myricaria bracteata)to 32.39(Digitaria sanguinalis)in the shoots,which demonstrated that the salinity tolerance mechanisms of these pioneer species differed significantly.Accumulation factors of Na^+in local plant species ranged from 0.04(D.sanguinalis)to 3.29(M.bracteata),whilst the translocation factor varied from 0.13(D.sanguinalis)to 2.92(M.bracteata).The results suggested that four pioneer plant species including K.scoparia,M.bracteate,Cynodon dactylon and D.sanguinalis could be suitable for revegetation at other disposal areas.展开更多
Revegetation on bauxite residue disposal areas is the most promising strategy to reduce its potential ecological risk during stacking or disposing.Migration of salt ions in bauxite residue is one of the major issues t...Revegetation on bauxite residue disposal areas is the most promising strategy to reduce its potential ecological risk during stacking or disposing.Migration of salt ions in bauxite residue is one of the major issues to stimulate soil formation to support plant growth.21 residue samples were collected and the related parameters including exchangeable cations,soluble ions,total salt,pH,electrical conductivity(EC)and exchangeable sodium percentage(ESP)were selected to evaluate alkalization and salinization of bauxite residue.High levels of ions,cation exchange capacity(TOC),total salt,exchangeable sodium percentage(ESP)and cation exchange capacity(CEC)in bauxite residue were detected with greater coefficient of variation(CV),which indicated that distribution characteristics of salt ions varied significantly.The percentage of sulfate-chloride-soda type in the residues accounted for 71.43%.The mean value of pH was 10.10,whilst mean value of ESP was 52.05%.It indicated that the residues in this case study belonged to sulfate-chloride-soda saline and alkaline soil.The research results could provide theoretical basis for soil formation in bauxite residue.展开更多
Vegetation encroachment occurred in bauxite residue disposal area(BRDA)following natural weathering processes,whilst the typical indicators of soil formation are still uncertain.Residue samples were collected from the...Vegetation encroachment occurred in bauxite residue disposal area(BRDA)following natural weathering processes,whilst the typical indicators of soil formation are still uncertain.Residue samples were collected from the BRDA in Central China,and related physical,chemical and biological indicators of bauxite residue with different storage years were determined.The indicators of soil formation in bauxite residue were selected using principal component analysis,factor analysis,and comprehensive evaluation to establish soil quality diagnostic index model on disposal areas.Following natural weathering processes,the texture of bauxite residue changed from silty loam to sandy loam.The pH and EC decreased,whilst porosity,nutrient element content and microbial biomass increased.The identified minimum data set(MDS)included available phosphorus(AP),moisture content(MC),C/N,sand content,total nitrogen(TN),microbial biomass carbon(MBC),and pH.The soil quality index of bauxite residue increased,and the relative soil quality index decreased from 1.89 to 0.15,which indicated that natural weathering had a significant effect on improveing the quality of bauxite residue and forming a new soil-like matrix.The diagnostic model of bauxite residue was established to provide data support for the regeneration on disposal area.展开更多
The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the p...The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the profile to drain,dry,shrink and crack to depth,leaching of soluble salts,alkalinity and Na down out of the surface layers,acidification by direct carbonation and natural seeding of tolerant vegetation with an accumulation of organic matter near the surface and an attendant development of an active microbial community.Following ripening,the surface layer can be tilled and gypsum and organic matter(e.g.manures,composts,biosolids)incorporated.These amendments result in a further decrease in pH,increase in Ca and other exchangeable cations,increased leaching of Na(with a reduction in exchangeable Na and ESP),improved physical properties,particularly aggregation,and a large increase in microbial activity.Other important considerations include the choice of suitable plant species tolerant to salinity/sodicity and local environmental conditions and the addition of balanced fertilizer applications.展开更多
Bauxite residue is the industrial waste generated from alumina production and commonly deposited in impoundments.These sites are bare of vegetation due to the extreme high salinity and alkalinity,as well as lack of nu...Bauxite residue is the industrial waste generated from alumina production and commonly deposited in impoundments.These sites are bare of vegetation due to the extreme high salinity and alkalinity,as well as lack of nutrients.However,long term weathering processes could improve residue properties to support the plant establishment.Here we investigate the development of bacterial communities and the geochemical drivers in bauxite residue,using Illumina high-throughput sequencing technology.Long term weathering reduced the pH in bauxite residue and increased its nutrients content.The bacterial community also significantly developed during long term weathering processes.Taxonomic analysis revealed that natural weathering processes encouraged the populations of Proteobacteria,Chloroflexi,Acidobacteria and Planctomycetes,whereas reducing the populations of Firmicutes and Actinobacteria.Redundancy analysis(RDA)indicated that total organic carbon(TOC)was the dominant factors affecting microbial structure.The results have demonstrated that natural weathering processes improved the soil development on the abandoned bauxite residue disposal areas,which also increased our understanding of the correlation between microbial variation and residue properties during natural weathering processes in Bauxite residue disposal areas.展开更多
Vermicomposting is an efficient and environmentally friendly technology to dispose of agricultural organic residues.The efficiency of organic residue decomposition during vermicomposting is directly affected by the bi...Vermicomposting is an efficient and environmentally friendly technology to dispose of agricultural organic residues.The efficiency of organic residue decomposition during vermicomposting is directly affected by the biomass and population structure of earthworms.In this study,we investigated how the earthworm biomass and population structure responded to changes in the physicochemical properties of six types of organic residue(cattle dung,herbal waste,rice straw,soybean straw,garden waste,and tea residues)during vermicomposting.Each type of organic residues was placed in a pot with earthworms Eisenia fetida,and the physicochemical properties of the organic residues and earthworm growth dynamics were recorded at 0,30,60,and 90 d of vermicomposting.The biomass and population structure of earthworms were stable or increased in rice straw,garden waste,and cattle dung within 60 d of vermicomposting,whereas in tea residues and herb waste,very little earthworm activity(3 adults and 2 cocoons)was recorded on day 30.Among the physicochemical parameters,the substrate C/N ratio was negatively correlated with earthworm growth dynamics.Decomposing organic residues showed higher NH_(4)^(+)-N and NH_(3)^(-)-N concentrations but a lower total organic carbon content,which negatively affected earthworm growth and reproduction.We recommend that chemical properties of vermicomposting systems should be monitored regularly.At the threshold levels of decomposing organic residue NH_(4)^(+)-N and NH_(3)^(-)-N concentrations,earthworms should be removed and the vermicompost can be harvested.Small-and large-scale farmers thus need to monitor the physicochemical properties of vermicompost to sustain active earthworm populations.展开更多
基金Project(41877511)supported by the National Natural Science Foundation of China
文摘Bauxite residue disposal areas(BRDAs)are physically degraded and hostile to plant growth.Nevertheless,natural plant colonization was observed in an abandoned BRDA in Central China.The pioneer plant species at the disposal area were identified,whilst distribution characteristics of salt ions such as Na^+,K^+,and Ca^2+in plant tissues and rhizosphere residues were investigated.The mean concentration of exchangeable Na^+in the rhizosphere soils was 19.5 cmol/kg,which suggested that these pioneer plants had relatively high salinity resistance.Sodium content varied from 0.84 cmol/kg(Digitaria sanguinalis)to 39.7 cmol/kg(Kochia scoparia),whilst K to Na ratio varied from 0.71(Myricaria bracteata)to 32.39(Digitaria sanguinalis)in the shoots,which demonstrated that the salinity tolerance mechanisms of these pioneer species differed significantly.Accumulation factors of Na^+in local plant species ranged from 0.04(D.sanguinalis)to 3.29(M.bracteata),whilst the translocation factor varied from 0.13(D.sanguinalis)to 2.92(M.bracteata).The results suggested that four pioneer plant species including K.scoparia,M.bracteate,Cynodon dactylon and D.sanguinalis could be suitable for revegetation at other disposal areas.
基金Project(41701587)supported by the National Natural Science Foundation of ChinaProject(PM-zx703-201803-057)supported by Basic Scientific Research Business of Central Institutes of Environmental Protection,China
文摘Revegetation on bauxite residue disposal areas is the most promising strategy to reduce its potential ecological risk during stacking or disposing.Migration of salt ions in bauxite residue is one of the major issues to stimulate soil formation to support plant growth.21 residue samples were collected and the related parameters including exchangeable cations,soluble ions,total salt,pH,electrical conductivity(EC)and exchangeable sodium percentage(ESP)were selected to evaluate alkalization and salinization of bauxite residue.High levels of ions,cation exchange capacity(TOC),total salt,exchangeable sodium percentage(ESP)and cation exchange capacity(CEC)in bauxite residue were detected with greater coefficient of variation(CV),which indicated that distribution characteristics of salt ions varied significantly.The percentage of sulfate-chloride-soda type in the residues accounted for 71.43%.The mean value of pH was 10.10,whilst mean value of ESP was 52.05%.It indicated that the residues in this case study belonged to sulfate-chloride-soda saline and alkaline soil.The research results could provide theoretical basis for soil formation in bauxite residue.
基金Projects(41877551,41842020)supported by the National Natural Science Foundation of China
文摘Vegetation encroachment occurred in bauxite residue disposal area(BRDA)following natural weathering processes,whilst the typical indicators of soil formation are still uncertain.Residue samples were collected from the BRDA in Central China,and related physical,chemical and biological indicators of bauxite residue with different storage years were determined.The indicators of soil formation in bauxite residue were selected using principal component analysis,factor analysis,and comprehensive evaluation to establish soil quality diagnostic index model on disposal areas.Following natural weathering processes,the texture of bauxite residue changed from silty loam to sandy loam.The pH and EC decreased,whilst porosity,nutrient element content and microbial biomass increased.The identified minimum data set(MDS)included available phosphorus(AP),moisture content(MC),C/N,sand content,total nitrogen(TN),microbial biomass carbon(MBC),and pH.The soil quality index of bauxite residue increased,and the relative soil quality index decreased from 1.89 to 0.15,which indicated that natural weathering had a significant effect on improveing the quality of bauxite residue and forming a new soil-like matrix.The diagnostic model of bauxite residue was established to provide data support for the regeneration on disposal area.
文摘The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the profile to drain,dry,shrink and crack to depth,leaching of soluble salts,alkalinity and Na down out of the surface layers,acidification by direct carbonation and natural seeding of tolerant vegetation with an accumulation of organic matter near the surface and an attendant development of an active microbial community.Following ripening,the surface layer can be tilled and gypsum and organic matter(e.g.manures,composts,biosolids)incorporated.These amendments result in a further decrease in pH,increase in Ca and other exchangeable cations,increased leaching of Na(with a reduction in exchangeable Na and ESP),improved physical properties,particularly aggregation,and a large increase in microbial activity.Other important considerations include the choice of suitable plant species tolerant to salinity/sodicity and local environmental conditions and the addition of balanced fertilizer applications.
基金supported by the National Natural Science Foundation of China(Grant No.41371475)the InnovativeProject of Independent Exploration of Central South University(No.1053320171026)
文摘Bauxite residue is the industrial waste generated from alumina production and commonly deposited in impoundments.These sites are bare of vegetation due to the extreme high salinity and alkalinity,as well as lack of nutrients.However,long term weathering processes could improve residue properties to support the plant establishment.Here we investigate the development of bacterial communities and the geochemical drivers in bauxite residue,using Illumina high-throughput sequencing technology.Long term weathering reduced the pH in bauxite residue and increased its nutrients content.The bacterial community also significantly developed during long term weathering processes.Taxonomic analysis revealed that natural weathering processes encouraged the populations of Proteobacteria,Chloroflexi,Acidobacteria and Planctomycetes,whereas reducing the populations of Firmicutes and Actinobacteria.Redundancy analysis(RDA)indicated that total organic carbon(TOC)was the dominant factors affecting microbial structure.The results have demonstrated that natural weathering processes improved the soil development on the abandoned bauxite residue disposal areas,which also increased our understanding of the correlation between microbial variation and residue properties during natural weathering processes in Bauxite residue disposal areas.
基金This work was supported by the National High Technology Key Research and Development Program of China(No.2016YFD0200900)the Provincial Natural Science Foundation of Guangdong,China(No.2016 A030313773).
文摘Vermicomposting is an efficient and environmentally friendly technology to dispose of agricultural organic residues.The efficiency of organic residue decomposition during vermicomposting is directly affected by the biomass and population structure of earthworms.In this study,we investigated how the earthworm biomass and population structure responded to changes in the physicochemical properties of six types of organic residue(cattle dung,herbal waste,rice straw,soybean straw,garden waste,and tea residues)during vermicomposting.Each type of organic residues was placed in a pot with earthworms Eisenia fetida,and the physicochemical properties of the organic residues and earthworm growth dynamics were recorded at 0,30,60,and 90 d of vermicomposting.The biomass and population structure of earthworms were stable or increased in rice straw,garden waste,and cattle dung within 60 d of vermicomposting,whereas in tea residues and herb waste,very little earthworm activity(3 adults and 2 cocoons)was recorded on day 30.Among the physicochemical parameters,the substrate C/N ratio was negatively correlated with earthworm growth dynamics.Decomposing organic residues showed higher NH_(4)^(+)-N and NH_(3)^(-)-N concentrations but a lower total organic carbon content,which negatively affected earthworm growth and reproduction.We recommend that chemical properties of vermicomposting systems should be monitored regularly.At the threshold levels of decomposing organic residue NH_(4)^(+)-N and NH_(3)^(-)-N concentrations,earthworms should be removed and the vermicompost can be harvested.Small-and large-scale farmers thus need to monitor the physicochemical properties of vermicompost to sustain active earthworm populations.