期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Carbon Dioxide, Methane, and Nitrous Oxide Emissions from a Rice-Wheat Rotation as Affected by Crop Residue Incorporation and Temperature 被引量:29
1
作者 ZOU Jianwen(邹建文) +7 位作者 HUANG Yao(黄耀) ZONG Lianggang(宗良纲) ZHENG Xunhua(郑循华) WANG Yuesi(王跃思) 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第5期691-698,共8页
Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season. Rapeseed cake and ... Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season. Rapeseed cake and wheat straw were incorporated into the soil at a rate of 2.25 t hm(-2) when the rice crop was transplanted in June 2001. Compared with the control, the incorporation of rapeseed cake enhanced the emissions of CO2, CH4, and N2O in the rice-growing season by 12.3%, 252.3%, and 17.5%, respectively, while no further effect was held on the emissions of CO2 and N2O in the following wheat-growing season. The incorporation of wheat straw enhanced the emissions of CO2 and CH4 by 7.1% and 249.6%, respectively, but reduced the N2O emission by 18.8% in the rice-growing season. Significant reductions of 17.8% for the CO2 and of 12.9% for the N2O emission were observed in the following wheat-growing season. A positive correlation existed between the emissions of N2O and CO2 (R-2 = 0.445, n = 73,p < 0.001) from the rice-growing season when N2O was emitted. A trade-off relationship between the emissions of CH4 and N2O was found in the rice-growing season. The CH4 emission was significantly correlated with the CO2 emission for the period from rice transplantation to field drainage, but not for the entire rice-growing season. In addition, air temperature was found to regulate the CO2 emissions from the non-waterlogged period over the entire rice-wheat rotation season and the N2O emissions from the nonwaterlogged period of the rice-growing season, which can be quantitatively described by an exponential function. The temperature coefficient (Q(10)) was then evaluated to be 2.3+/-0.2 for the CO2 emission and 3.9+/-0.4 for the N2O emission, respectively. 展开更多
关键词 emissions of CO2 CH4 and N2O rice-wheat rotation incorporation of crop residues temperature
下载PDF
Short-term effects of post-fire mulching with straw or wood chips on soil properties of semi-arid forests 被引量:1
2
作者 Manuel Esteban Lucas Borja Demetrio Antonio Zema 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1777-1790,共14页
Few studies have compared the variability of soil properties using different types of mulches in semi-arid forests.This study evaluated the changes in physico-chemical soil properties in a semi-arid forest of Central ... Few studies have compared the variability of soil properties using different types of mulches in semi-arid forests.This study evaluated the changes in physico-chemical soil properties in a semi-arid forest of Central Eastern Spain,where straw and pine wood chips were distributed as mulch three months after a wildfire.Soils were sampled under burned and unmulched and burned and mulched plots three and nine months after the treatments.The data was processed using Principal Component Analysis(PCA)and Analytical Hierarchical Cluster Analysis(AHCA).Mulching with straw or wood chips did not have any significant effects on the texture and chemical properties of burned sites few months after the treatment.In contrast,significant changes are expected over time in organic matter,nutrients and many ions.There were no significant differences in soil properties between the two mulches.These low changes were confirmed by PCA coupled with AHCA,which did not show a clear distinction among the three soil conditions.However,a noticeable and significant variability of many of these properties over time was evident.This study shows that mulching does not degrade of soil properties in the short-term after a wildfire and after post-fire treatments,and thus helps protect semi-arid forest ecosystems against the negative impacts of high-severity fires. 展开更多
关键词 Post-fire management High-severity fire ARIDISOLS Erosion Vegetal residues incorporation Soil degradation
下载PDF
Uncertainty and Sensitivity Analyses for Modeling Long-Term Soil Organic Carbon Dynamics of Paddy Soils Under Different Climate-Soil-Management Combinations
3
作者 QIN Fal ZHAO Yongcun +2 位作者 SHI Xuezheng XU Shengxiang YU Dongsheng 《Pedosphere》 SCIE CAS CSCD 2017年第5期912-925,共14页
Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more... Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more confidence, the uncertainty interval should be as narrow as possible. Here, the soil organic carbon (SOC) dynamics of the major paddy soil subgroup from 4 different paddy field regions of China (located in 4 counties under different climate-soil-management combinations) were modeled using the DeNitrification- DeComposition (DNDC) model for the period from 1980 to 2008. Uncertainty intervals associated with the SOC dynamics for these 4 subgroups were estimated by a long-term global sensitivity and uncertainty analysis (i. e., the Sobolt method), and their sensitivities to 7 influential factors were quantified using the total effect sensitivity index. The results, modeled with high confidence, indicated that in the past 29 years, the studied paddy soils in Xinxing, Yixing, and Zhongjiang counties were carbon (C) sinks, while the paddy soil in Helong County was a C source. The 3 C sinks sequestered 12.2 (5.4, 19.6), 17.1 (8.9, 25.0), and 16.9 (-1.2, 33.6) t C ha-1 (values in the parentheses are the 5th and 95th percentiles, respectively). Conversely, the C source had a loss of -5.4 (-14.2, 0.06) t C ha-1 in the past 29 years. The 7 factors, which changed with the climate-soil-management context, exhibited variable influences on modeled SOC. Measures with potential to conserve or sequestrate more C into paddy soils, such as incorporating more crop residues into soils and reducing chemical fertilizer application rates, were recommended for specific soils based on the sensitivity analysis results. 展开更多
关键词 carbon loss carbon sequestration carbon sink carbon source DeNitrification-DeComposition model fertilizer appli-cation influential factors residue incorporation Sobol~ method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部