This study focuses on the thermo-mechanical properties of Carbon Fibre/Polyimide Composite(CFPC)attaching collars under transient heating.The CFPC attaching collars were fabricated by a high-temperature resin transfer...This study focuses on the thermo-mechanical properties of Carbon Fibre/Polyimide Composite(CFPC)attaching collars under transient heating.The CFPC attaching collars were fabricated by a high-temperature resin transfer moulding process,and their thermo-mechanical properties under the conditions of simultaneous transient heating and bending load were investigated.The results show that the attaching collar tends to fail at 118% of the limit load.The failure mode includes the fracture of the connecting screws,local extrusion damage of the hole edges,and slight ablation damage at the outer plies.And there is no observable residual deformation in the composite attaching collar.Furthermore,considering that the material properties vary with temperature,a progressive damage model based on the sequential thermo-mechanical coupling method was established to study the failure mechanism of the attaching collar.Finally,the damage factor of the CFPC was calculated to assess the safety status of the attaching collar.The results show that the primary damage modes of the composite attaching collar are intralaminar failure,which mainly occurs at the heat insulation layer and the hole edges,and these slightly affect the structural bearing capacity.A good correlation between the experiment and FEA is obtained.The test methods and analysis models proposed contribute to the safety assessment of composite structures under transient heating.展开更多
Tension and shear tests are carried out on composite cross-joints, produced by resin transfer moulding (RTM), stitch-RTM and cobonding techniques separately, to investigate the influences of different production metho...Tension and shear tests are carried out on composite cross-joints, produced by resin transfer moulding (RTM), stitch-RTM and cobonding techniques separately, to investigate the influences of different production methods on their mechanical properties and their failure mechanism. It is concluded from test results that, in terms of mechanical properties, the RTM-made cross-joint holds superiority over other two, and both stitch-RTM and cobonding methods have significant adverse effects on mechanical proper- t...展开更多
This paper deals with static pull and push bending tests on two-dimensional (2D) orthogonal EW220/5284 twill weave fabric (TWF) composite tee-joints processed with the resin transfer moulding (RTM) technique. St...This paper deals with static pull and push bending tests on two-dimensional (2D) orthogonal EW220/5284 twill weave fabric (TWF) composite tee-joints processed with the resin transfer moulding (RTM) technique. Static pull and push bending properties are determined and failure initiation mechanism is deduced from experimental observations. The experiments show that the failure initiation load, on average, is greater for push bending than for pull bending, whereas the scatter is smaller for push bending than for pull bending. The failure mode of RTM-made tee-joints in pull bending tests can be reckoned to be characteristic of debonding of resin matrix at the interface between the triangular resin-rich zone and the curved web of tee-joint until complete separation of the curved web from the bottom plate. In contrast, as distinct from the products subject to pull bending loading, the RTM tee-joints in push bending tests experience matrix cracking and fibre fracture from outer layers to inner layers of the bottom plate until catastrophic collapse resulting from the bending. Three-dimensional finite element (FE) models are presented to simulate the load transfer path and failure initiation mechanism of RTM-made TWF composite tee-joint based on the maximum stress criterion. Good correlation between experimental and numerical results is achieved.展开更多
基金supported by the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.2016QNRC001)the Science and Technology Commission of Shanghai Municipality,China(No.19DZ1100300)。
文摘This study focuses on the thermo-mechanical properties of Carbon Fibre/Polyimide Composite(CFPC)attaching collars under transient heating.The CFPC attaching collars were fabricated by a high-temperature resin transfer moulding process,and their thermo-mechanical properties under the conditions of simultaneous transient heating and bending load were investigated.The results show that the attaching collar tends to fail at 118% of the limit load.The failure mode includes the fracture of the connecting screws,local extrusion damage of the hole edges,and slight ablation damage at the outer plies.And there is no observable residual deformation in the composite attaching collar.Furthermore,considering that the material properties vary with temperature,a progressive damage model based on the sequential thermo-mechanical coupling method was established to study the failure mechanism of the attaching collar.Finally,the damage factor of the CFPC was calculated to assess the safety status of the attaching collar.The results show that the primary damage modes of the composite attaching collar are intralaminar failure,which mainly occurs at the heat insulation layer and the hole edges,and these slightly affect the structural bearing capacity.A good correlation between the experiment and FEA is obtained.The test methods and analysis models proposed contribute to the safety assessment of composite structures under transient heating.
文摘Tension and shear tests are carried out on composite cross-joints, produced by resin transfer moulding (RTM), stitch-RTM and cobonding techniques separately, to investigate the influences of different production methods on their mechanical properties and their failure mechanism. It is concluded from test results that, in terms of mechanical properties, the RTM-made cross-joint holds superiority over other two, and both stitch-RTM and cobonding methods have significant adverse effects on mechanical proper- t...
基金National Natural Science Foundation of China (E050603)Aeronautical Science Foundation of China (20095251024)
文摘This paper deals with static pull and push bending tests on two-dimensional (2D) orthogonal EW220/5284 twill weave fabric (TWF) composite tee-joints processed with the resin transfer moulding (RTM) technique. Static pull and push bending properties are determined and failure initiation mechanism is deduced from experimental observations. The experiments show that the failure initiation load, on average, is greater for push bending than for pull bending, whereas the scatter is smaller for push bending than for pull bending. The failure mode of RTM-made tee-joints in pull bending tests can be reckoned to be characteristic of debonding of resin matrix at the interface between the triangular resin-rich zone and the curved web of tee-joint until complete separation of the curved web from the bottom plate. In contrast, as distinct from the products subject to pull bending loading, the RTM tee-joints in push bending tests experience matrix cracking and fibre fracture from outer layers to inner layers of the bottom plate until catastrophic collapse resulting from the bending. Three-dimensional finite element (FE) models are presented to simulate the load transfer path and failure initiation mechanism of RTM-made TWF composite tee-joint based on the maximum stress criterion. Good correlation between experimental and numerical results is achieved.