This paper aims to investigate the effect of porosity percentage on the wear performance of a wet clutch. A wear calculation model for the relationship of porosity and wear mass loss is established. The results of exp...This paper aims to investigate the effect of porosity percentage on the wear performance of a wet clutch. A wear calculation model for the relationship of porosity and wear mass loss is established. The results of experiments conducted verify the wear coefficient expression used in the model. The influence of porosity on the wear performance of a friction disc was also analyzed for various pressures and speeds. Specifically,the 80 min sliding test was performed with three different friction disc porosity percentages using a wet clutch test rig. Comparison of the model calculation results with the measured values confirmed the accuracy of the calculation model. The test results show that the calculated and detected data fit well,which indicates that the wear calculation model can be used to estimate the wear mass loss of wet clutch friction plates. These research results will help to improve the anti-abrasion properties and employment lifespan of wet clutch friction discs.展开更多
A mathematical model was developed to analyze the characteristics of the wet clutch during engagement. The lubricant squeeze action was simulated with Patir and Cheng average flow model in which the permeability of fr...A mathematical model was developed to analyze the characteristics of the wet clutch during engagement. The lubricant squeeze action was simulated with Patir and Cheng average flow model in which the permeability of friction material is taken into account, and the asperity load is calculated according to the Greenwood and Tripp approach. In this model, effects of friction material permeability, applied load and driving velocity on the engagement characteristics of the wet clutch were studied. The results show that friction material with high permeability reduces the film thickness rapidly and increases the torque peak; the applied load increases the asperity contact pressure and the friction torque, and reduces the engagement time; the driving velocity mainly increases the engagement time. The theoretical torque and relative velocity curves agree qualitatively with the experimental ones, which verifies the wet clutch engagement model.展开更多
基金supported by the National Natural Science Foundation (No. 51605035)completed with support from the Beijing Finance Fund for Science and Technology Planning project (Nos. KZ201611232032 and KM201611232004)
文摘This paper aims to investigate the effect of porosity percentage on the wear performance of a wet clutch. A wear calculation model for the relationship of porosity and wear mass loss is established. The results of experiments conducted verify the wear coefficient expression used in the model. The influence of porosity on the wear performance of a friction disc was also analyzed for various pressures and speeds. Specifically,the 80 min sliding test was performed with three different friction disc porosity percentages using a wet clutch test rig. Comparison of the model calculation results with the measured values confirmed the accuracy of the calculation model. The test results show that the calculated and detected data fit well,which indicates that the wear calculation model can be used to estimate the wear mass loss of wet clutch friction plates. These research results will help to improve the anti-abrasion properties and employment lifespan of wet clutch friction discs.
基金Funded by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Candidates
文摘A mathematical model was developed to analyze the characteristics of the wet clutch during engagement. The lubricant squeeze action was simulated with Patir and Cheng average flow model in which the permeability of friction material is taken into account, and the asperity load is calculated according to the Greenwood and Tripp approach. In this model, effects of friction material permeability, applied load and driving velocity on the engagement characteristics of the wet clutch were studied. The results show that friction material with high permeability reduces the film thickness rapidly and increases the torque peak; the applied load increases the asperity contact pressure and the friction torque, and reduces the engagement time; the driving velocity mainly increases the engagement time. The theoretical torque and relative velocity curves agree qualitatively with the experimental ones, which verifies the wet clutch engagement model.