Pipe belt conveyor is a new type of environmentally friendly and efficient bulk conveying equipment.In the design of the roller,the belt and the driving motor of pipe belt conveyor,the sag resistance is a key paramete...Pipe belt conveyor is a new type of environmentally friendly and efficient bulk conveying equipment.In the design of the roller,the belt and the driving motor of pipe belt conveyor,the sag resistance is a key parameter.Meanwhile,the normal force between the conveyor belt and the roller group is the other important factor need be considered and has a great influence on the sag resistance.This paper analyzes a pipe belt conveyor with a diameter of 150 mm to study the calculation method of normal force.And the relationship between the normal force and the sag resistance is explored.Firstly,the normal force is decomposed into three components related to the forming force of belt,material gravity and belt gravity.So it can be expressed as a linear combination of these three quantities,and the coefficients of each component are obtained based on the dynamic analysis of belt-roller.The results show that the coefficient is mainly affected by the material filling rate,and is almost not affected by the distance between the rollers and the density of the material.The calculation method of the normal force is eventually obtained.Secondly,the normal force in the case of different material filling rates is tested by experiments,and the calculation method of the normal force is verified.Thirdly,the variation law of the sag resistance in the case of different roller group spacing and material filling rate is studied by the dynamic model.It is found that the roller group spacing and material filling rate affects the sag resistance by changing the normal force.There is a power function relationship between the sag resistance and the normal force.In the case of different roller group spacing and material filling rate,the relationship among the sag resistance and the normal force remains unchanged.This study results are of great significance to the design of pipe belt conveyor.展开更多
A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron ...A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron microscopy were used to analyze its morphologies and microstructures. The results show that the microstructures of the pipe blank are homogeneous and the precipitates are uniformly distributed d 25~70 nm spherical or sphere like Al 12 (Fe,V) 3Si particles, its mechanical properties at room temperature and 350 ℃ after densification by extrusion are σ b=412 MPa, δ =7.6% and σ b=187 MPa, δ =7.6%, respectively. The analyses indicate that the proper match of the motion rates of atomizer and substrate can produce deposited blanks with uniform thickness and relatively high cooling rate.展开更多
Theoretical derivation of local resistance coefficient of sudden expansion tube is presented. Several assumptions are analyzed in the theoretical derivation. That the head loss shall be neglected is affirmed. Experime...Theoretical derivation of local resistance coefficient of sudden expansion tube is presented. Several assumptions are analyzed in the theoretical derivation. That the head loss shall be neglected is affirmed. Experimental data proves that the pressure before and after sudden expansion section is basically the same. That the friction force on the side face of control body is neglected is denied and it is pointed out that such neglect is the main cause for error between theoretical calculation and actual measurement. Experimental device for measuring local resistance coefficient is designed in combination with theoretical derivation process. Optimal gradually varied flow section is selected after sudden expansion pipe in Bernoulli equation based on variation of piezometer tube head. It is pointed out in accordance with experimental data analysis that the value of local resistance coefficient of sudden expansion tube determined through experimental data is closer to the actual situation during pipeline design.展开更多
This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The pro...This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.展开更多
Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present...Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present article,a comprehensive literature review is performed on the nanofluids’ applications in heat pipes.Based on reviewed studies,nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes,pulsating heat pipes,and thermosyphons.Besides,it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles;high concentration of nanoparticles causes a higher thermal resistance which is mainly attributed to increment in the dynamic viscosity and the higher possibility of particles’ agglomeration.Enhancement in heat transfer performance is the result of increasing in nucleation sites and the intrinsically greater nanofluids’ thermal conductivity.展开更多
A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial di...A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial distribution of capillary radius,and the effect of working temperature and wick structure on the maximum heat transfer capability,as well as the effect of the heat load and working temperature on the total thermal resistance are all investigated and discussed.It is indicated that the meniscus radius increases non-linearly and slowly at the evaporator and adiabatic section along the axial direction,while increasing drastically at the beginning of the condenser section.The pressure difference in the vapor phase along the axial direction is much smaller than that in the liquid phase.In addition,the heat transfer capacity is deeply affected by the working temperature and the size of the wick.A groove wick structure with a wider groove base width and higher groove depth can enhance the heat transfer capability.The effect of the working temperature on the total thermal resistance is insignificant;however,the total thermal resistance shows dependence upon the heat load.In addition,the accuracy of the model is also verified by the experiment in this paper.展开更多
Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming an...Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming and solid state sintering.The wick could be divided into two parts for liquid capillary pumping flow:groove sintered zone and uniform sintered zone.Both of the thermal resistance network model and the maximum heat transfer capability model of GSHP were built.Compared with the theoretical values,the heat transfer limit and thermal resistance of GSHP were measured from three aspects:copper powder size,wick thickness and number of micro grooves.The results show that the wick thickness has the greatest effect on the thermal resistance of GSHP while the copper powder size has the most important influence on the heat transfer limit.Given certain copper powder size and wick thickness,the thermal resistance of GSHP can be the lowest when micro-groove number is about 55.展开更多
The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside th...The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside the OHP with different filling ratios of 40%, 60% and 80% of total inside volume. Experimental results show that the thermal characteristics are significantly inter-related with pressure fluctuations as well as pressure frequency. And the pressure frequency also depends upon the evaporator temperature that is maintained in the range of 60-96 ℃. Piezoresistive absolute pressure sensor (Model-Kistler 4045A5) was used to take data. The investigation shows that the filling ratio of 60% gives the highest inside pressure magnitude at maximum number of pressure frequency at any of set evaporator temperature and the lowest heat flow resistance is achieved at 60% filling ratio.展开更多
The effect of working fluid on the start-up and thermal performance in terms of thermal resistance and heat transfer coefficient of a pulsating heat pipe have been studied in the present paper. Methanol and de-ionized...The effect of working fluid on the start-up and thermal performance in terms of thermal resistance and heat transfer coefficient of a pulsating heat pipe have been studied in the present paper. Methanol and de-ionized water has been selected as the working fluid. The minimum startup power for DI water was obtained at 50% filling ratio and for methanol at 40%. The optimum filling ratio in terms of minimum startup power and minimum thermal resistance was 50% for DI water and 40% for methanol. The minimum thermal resistances for DI water and methanol were observed at vertical orientation. The evaporator side heat transfer coefficient for water was slightly more, while the condenser side heat transfer coefficient was appreciably more than that of methanol. Studies were also conducted for start-up time and temperature at different orientations and it was found that the PHP charged with methanol worked efficiently at all orientations.展开更多
In order to prolong the service life of castables for hot blast stove pipes,effects of SiO2 micropowder addition and aggregate kind on properties of castables for hot blast stove pipes,and properties of silica sol bon...In order to prolong the service life of castables for hot blast stove pipes,effects of SiO2 micropowder addition and aggregate kind on properties of castables for hot blast stove pipes,and properties of silica sol bonded castables were researched using homogenized bauxite,andalusite particles,andalusite fines,white fused corundum fines,α-Al2O3 micropowder,pure calcium aluminate cement,SiO2 micropowder,and silica sol as starting materials. The results show that:(1) as SiO2 micropowder addition increases,the shrinkage rate of fired specimens increases; BD increases firstly,reaches the highest at 4 mass%,and then decreases; CMOR and CCS of all specimens increase gradually; so the appropriate SiO2 micropowder addition is 4 mass%;(2) the specimens with bauxite aggregate have better CCS and volume stability,but specimens with andalusite aggregate have better thermal shock resistance;( 3) for castables for hot blast stoves using silica sol as binder,the addition of pure calcium aluminate cement can decrease the linear change rate after treatment at 1 400℃ and can slightly enhance CCS and CMOR,but has very little influence on AP and BD; and the introduction of citric acid worsens the thermal shock resistance of specimens.展开更多
This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxe...This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxes (10 - 30 W). Here, pure water (distilled water) and graphene oxide (GO)/water nanofluids are employed respectively as working fluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.10%, 0.15%, and 0.20% volume concentrations. Multi-heat pipe is fabricated from copper;the heating and cooling sections are the same size and both are connected by four circular parallel tubes. Temperature fields and thermal resistance are measured for different filling ratio, heat fluxes and volume concentrations. The results indicated that the thermal performance of heat pipe increased with increasing the concentration of GO nanoparticles in the base fluid, while the maximum heat transfer enhancement was observed at 0.20% volume concentration. GO/water nanofluids showed lower thermal resistance compared to pure water;the optimal thermal resistance was obtained at 100% filling charge ratio with 0.20% volume concentration. Studies were also demonstrated that heat transfer coefficient of the heat pipe significantly increases with increasing the input heat flux and GO nanoparticles concentration.展开更多
A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA...A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA-lined pipe has been researched and developed. Itsoperational principal and technical characteristic is also introduced. The stress and strain in theliner and outer pipe during the hydroforming process have been analyzed and the mechanism ofhydraulic expansion method is studied theoretically. The final forming pressure formula is suggestedand the theoretical analysis is verified by experimental investigation. The results indicate thatthe new technology is feasible and can be applied in industrial production.展开更多
Effective thermal performance of oscillating heat pipe(OHP)is driven by inside pressure distribution.Heat transfer phenomena were reported in terms of pressure and frequency of pressure fluctuation in multi loop OHP c...Effective thermal performance of oscillating heat pipe(OHP)is driven by inside pressure distribution.Heat transfer phenomena were reported in terms of pressure and frequency of pressure fluctuation in multi loop OHP charged with aqueous Al2O3 and MWCNTs/Al2O3 nanoparticles.The influences on thermal resistance of aqueous Al2O3,MWCNTs as well as the hybrid of them in OHP having 3 mm in inner diameter were investigated at 60% filling ratio.Experimental results show that thermal characteristics are significantly inter-related with pressure distribution and strongly depend upon the number of pressure fluctuations with time.Frequency of pressure depends upon the power input in evaporative section.A little inclusion of MWCNTs into aqueous Al2O3 at 60% filling ratio achieves the highest fluctuation frequency and the lowest thermal resistance at any evaporator power input though different nanofluids cause different thermal performances of OHPs.展开更多
Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of the...Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.展开更多
In the test, internal inlay drip irrigation pipes with different wal thicknesses or diameters (¢at 12 mm and 16 mm) were tested under varying tension forces and it was concluded that 90 N is the rational one. What...In the test, internal inlay drip irrigation pipes with different wal thicknesses or diameters (¢at 12 mm and 16 mm) were tested under varying tension forces and it was concluded that 90 N is the rational one. What’s more, the smal er drip-irrigation inner diameter, the thinner wal thickness, and the higher tension force, the lower acceptability, and the larger drip-irrigation inner diameter, the thicker wal thickness, and the lower tension force, the higher acceptability. The causes were analyzed in the research, including manufacturing technique leading to disqualifica-tion and different specifications with the same demands on techniques, and inadap-tation to tension force at 130 N.展开更多
The equipments and pipes serving at high temperature and pressure and the presence of hydrogen in the petrochemical industry are usually made of Cr-Mo steels.Cr9Mo pipes replacing Cr5Mo are widely used in many parts o...The equipments and pipes serving at high temperature and pressure and the presence of hydrogen in the petrochemical industry are usually made of Cr-Mo steels.Cr9Mo pipes replacing Cr5Mo are widely used in many parts of/with high-sulfur crude oil refining equipment to meet the more demanding high temperature anticorrosion and oxidation resistance requirements.The mechanical property,creep rupture property and high temperature oxidation-resistant property of domestic Cr9Mo steel are at the same level as the similar foreign products.Three years applications indicate that domestic Cr9Mo steel can fully meet the service requirements of petrochemical industries.Finally,this paper presents the material selection guidelines for the key oil refining devices processing of low sulfur/high acid crude oil.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 51705144)Hunan Provincial Science and Technology Major Project of China (Grant No. 2015GK1003)Jiangsu Provincial Mine Electromechanical Equipment Key Laboratory Development Fund of China (Grant No. JSKL-MMEE-2018-2)
文摘Pipe belt conveyor is a new type of environmentally friendly and efficient bulk conveying equipment.In the design of the roller,the belt and the driving motor of pipe belt conveyor,the sag resistance is a key parameter.Meanwhile,the normal force between the conveyor belt and the roller group is the other important factor need be considered and has a great influence on the sag resistance.This paper analyzes a pipe belt conveyor with a diameter of 150 mm to study the calculation method of normal force.And the relationship between the normal force and the sag resistance is explored.Firstly,the normal force is decomposed into three components related to the forming force of belt,material gravity and belt gravity.So it can be expressed as a linear combination of these three quantities,and the coefficients of each component are obtained based on the dynamic analysis of belt-roller.The results show that the coefficient is mainly affected by the material filling rate,and is almost not affected by the distance between the rollers and the density of the material.The calculation method of the normal force is eventually obtained.Secondly,the normal force in the case of different material filling rates is tested by experiments,and the calculation method of the normal force is verified.Thirdly,the variation law of the sag resistance in the case of different roller group spacing and material filling rate is studied by the dynamic model.It is found that the roller group spacing and material filling rate affects the sag resistance by changing the normal force.There is a power function relationship between the sag resistance and the normal force.In the case of different roller group spacing and material filling rate,the relationship among the sag resistance and the normal force remains unchanged.This study results are of great significance to the design of pipe belt conveyor.
文摘A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron microscopy were used to analyze its morphologies and microstructures. The results show that the microstructures of the pipe blank are homogeneous and the precipitates are uniformly distributed d 25~70 nm spherical or sphere like Al 12 (Fe,V) 3Si particles, its mechanical properties at room temperature and 350 ℃ after densification by extrusion are σ b=412 MPa, δ =7.6% and σ b=187 MPa, δ =7.6%, respectively. The analyses indicate that the proper match of the motion rates of atomizer and substrate can produce deposited blanks with uniform thickness and relatively high cooling rate.
文摘Theoretical derivation of local resistance coefficient of sudden expansion tube is presented. Several assumptions are analyzed in the theoretical derivation. That the head loss shall be neglected is affirmed. Experimental data proves that the pressure before and after sudden expansion section is basically the same. That the friction force on the side face of control body is neglected is denied and it is pointed out that such neglect is the main cause for error between theoretical calculation and actual measurement. Experimental device for measuring local resistance coefficient is designed in combination with theoretical derivation process. Optimal gradually varied flow section is selected after sudden expansion pipe in Bernoulli equation based on variation of piezometer tube head. It is pointed out in accordance with experimental data analysis that the value of local resistance coefficient of sudden expansion tube determined through experimental data is closer to the actual situation during pipeline design.
文摘This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.
文摘Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present article,a comprehensive literature review is performed on the nanofluids’ applications in heat pipes.Based on reviewed studies,nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes,pulsating heat pipes,and thermosyphons.Besides,it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles;high concentration of nanoparticles causes a higher thermal resistance which is mainly attributed to increment in the dynamic viscosity and the higher possibility of particles’ agglomeration.Enhancement in heat transfer performance is the result of increasing in nucleation sites and the intrinsically greater nanofluids’ thermal conductivity.
基金Supported by the 11th Five Year National Science and Technology Support Key Project of China(2008BAJ12B02)
文摘A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial distribution of capillary radius,and the effect of working temperature and wick structure on the maximum heat transfer capability,as well as the effect of the heat load and working temperature on the total thermal resistance are all investigated and discussed.It is indicated that the meniscus radius increases non-linearly and slowly at the evaporator and adiabatic section along the axial direction,while increasing drastically at the beginning of the condenser section.The pressure difference in the vapor phase along the axial direction is much smaller than that in the liquid phase.In addition,the heat transfer capacity is deeply affected by the working temperature and the size of the wick.A groove wick structure with a wider groove base width and higher groove depth can enhance the heat transfer capability.The effect of the working temperature on the total thermal resistance is insignificant;however,the total thermal resistance shows dependence upon the heat load.In addition,the accuracy of the model is also verified by the experiment in this paper.
基金Project(51205423)supported by the National Natural Science Foundation of ChinaProject(2012M510205)supported by China Postdoctoral Science Foundation+1 种基金Project(S2012040007715)supported by Natural Science Foundation of Guangdong Province,ChinaProject(20120171120036)supported by New Teachers’Fund for Doctor Stations,Ministry of Education,China
文摘Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming and solid state sintering.The wick could be divided into two parts for liquid capillary pumping flow:groove sintered zone and uniform sintered zone.Both of the thermal resistance network model and the maximum heat transfer capability model of GSHP were built.Compared with the theoretical values,the heat transfer limit and thermal resistance of GSHP were measured from three aspects:copper powder size,wick thickness and number of micro grooves.The results show that the wick thickness has the greatest effect on the thermal resistance of GSHP while the copper powder size has the most important influence on the heat transfer limit.Given certain copper powder size and wick thickness,the thermal resistance of GSHP can be the lowest when micro-groove number is about 55.
基金Project(2011-0009022) supported by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside the OHP with different filling ratios of 40%, 60% and 80% of total inside volume. Experimental results show that the thermal characteristics are significantly inter-related with pressure fluctuations as well as pressure frequency. And the pressure frequency also depends upon the evaporator temperature that is maintained in the range of 60-96 ℃. Piezoresistive absolute pressure sensor (Model-Kistler 4045A5) was used to take data. The investigation shows that the filling ratio of 60% gives the highest inside pressure magnitude at maximum number of pressure frequency at any of set evaporator temperature and the lowest heat flow resistance is achieved at 60% filling ratio.
文摘The effect of working fluid on the start-up and thermal performance in terms of thermal resistance and heat transfer coefficient of a pulsating heat pipe have been studied in the present paper. Methanol and de-ionized water has been selected as the working fluid. The minimum startup power for DI water was obtained at 50% filling ratio and for methanol at 40%. The optimum filling ratio in terms of minimum startup power and minimum thermal resistance was 50% for DI water and 40% for methanol. The minimum thermal resistances for DI water and methanol were observed at vertical orientation. The evaporator side heat transfer coefficient for water was slightly more, while the condenser side heat transfer coefficient was appreciably more than that of methanol. Studies were also conducted for start-up time and temperature at different orientations and it was found that the PHP charged with methanol worked efficiently at all orientations.
文摘In order to prolong the service life of castables for hot blast stove pipes,effects of SiO2 micropowder addition and aggregate kind on properties of castables for hot blast stove pipes,and properties of silica sol bonded castables were researched using homogenized bauxite,andalusite particles,andalusite fines,white fused corundum fines,α-Al2O3 micropowder,pure calcium aluminate cement,SiO2 micropowder,and silica sol as starting materials. The results show that:(1) as SiO2 micropowder addition increases,the shrinkage rate of fired specimens increases; BD increases firstly,reaches the highest at 4 mass%,and then decreases; CMOR and CCS of all specimens increase gradually; so the appropriate SiO2 micropowder addition is 4 mass%;(2) the specimens with bauxite aggregate have better CCS and volume stability,but specimens with andalusite aggregate have better thermal shock resistance;( 3) for castables for hot blast stoves using silica sol as binder,the addition of pure calcium aluminate cement can decrease the linear change rate after treatment at 1 400℃ and can slightly enhance CCS and CMOR,but has very little influence on AP and BD; and the introduction of citric acid worsens the thermal shock resistance of specimens.
文摘This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxes (10 - 30 W). Here, pure water (distilled water) and graphene oxide (GO)/water nanofluids are employed respectively as working fluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.10%, 0.15%, and 0.20% volume concentrations. Multi-heat pipe is fabricated from copper;the heating and cooling sections are the same size and both are connected by four circular parallel tubes. Temperature fields and thermal resistance are measured for different filling ratio, heat fluxes and volume concentrations. The results indicated that the thermal performance of heat pipe increased with increasing the concentration of GO nanoparticles in the base fluid, while the maximum heat transfer enhancement was observed at 0.20% volume concentration. GO/water nanofluids showed lower thermal resistance compared to pure water;the optimal thermal resistance was obtained at 100% filling charge ratio with 0.20% volume concentration. Studies were also demonstrated that heat transfer coefficient of the heat pipe significantly increases with increasing the input heat flux and GO nanoparticles concentration.
基金This project is supported by National Science and Technology Foundation of China (No.96-918-02-03).
文摘A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA-lined pipe has been researched and developed. Itsoperational principal and technical characteristic is also introduced. The stress and strain in theliner and outer pipe during the hydroforming process have been analyzed and the mechanism ofhydraulic expansion method is studied theoretically. The final forming pressure formula is suggestedand the theoretical analysis is verified by experimental investigation. The results indicate thatthe new technology is feasible and can be applied in industrial production.
基金Project(NRF-2012R1A1A4A01002052)supported by Basic Science Research Program through the National Research Foundation(NRF)funded by the Ministry of Education,Science and Technology of Korea
文摘Effective thermal performance of oscillating heat pipe(OHP)is driven by inside pressure distribution.Heat transfer phenomena were reported in terms of pressure and frequency of pressure fluctuation in multi loop OHP charged with aqueous Al2O3 and MWCNTs/Al2O3 nanoparticles.The influences on thermal resistance of aqueous Al2O3,MWCNTs as well as the hybrid of them in OHP having 3 mm in inner diameter were investigated at 60% filling ratio.Experimental results show that thermal characteristics are significantly inter-related with pressure distribution and strongly depend upon the number of pressure fluctuations with time.Frequency of pressure depends upon the power input in evaporative section.A little inclusion of MWCNTs into aqueous Al2O3 at 60% filling ratio achieves the highest fluctuation frequency and the lowest thermal resistance at any evaporator power input though different nanofluids cause different thermal performances of OHPs.
文摘Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.
文摘In the test, internal inlay drip irrigation pipes with different wal thicknesses or diameters (¢at 12 mm and 16 mm) were tested under varying tension forces and it was concluded that 90 N is the rational one. What’s more, the smal er drip-irrigation inner diameter, the thinner wal thickness, and the higher tension force, the lower acceptability, and the larger drip-irrigation inner diameter, the thicker wal thickness, and the lower tension force, the higher acceptability. The causes were analyzed in the research, including manufacturing technique leading to disqualifica-tion and different specifications with the same demands on techniques, and inadap-tation to tension force at 130 N.
文摘The equipments and pipes serving at high temperature and pressure and the presence of hydrogen in the petrochemical industry are usually made of Cr-Mo steels.Cr9Mo pipes replacing Cr5Mo are widely used in many parts of/with high-sulfur crude oil refining equipment to meet the more demanding high temperature anticorrosion and oxidation resistance requirements.The mechanical property,creep rupture property and high temperature oxidation-resistant property of domestic Cr9Mo steel are at the same level as the similar foreign products.Three years applications indicate that domestic Cr9Mo steel can fully meet the service requirements of petrochemical industries.Finally,this paper presents the material selection guidelines for the key oil refining devices processing of low sulfur/high acid crude oil.