The plastic deformation of solder joint depends on the plastic deformation resistance of solder. The studyon plastic deformation resistance of Sn-Pb-RE solder at room temperature shows that with the increase 0f RE con...The plastic deformation of solder joint depends on the plastic deformation resistance of solder. The studyon plastic deformation resistance of Sn-Pb-RE solder at room temperature shows that with the increase 0f RE content, theplastic deformation resistance of Sn-Pb-RE solder enhances. The microstructure investigation reveals'that the addition ofRE makes the microstructure of solder fine and homogeneous, which enhances hwher hardening and multi-sliding hardening. Moreover, RE on grain boundaries hinders the grain boundary sliding. Therefore, the deformation resistance ofsolder enhances. However, since it is very hard, the intermetallic compounds of RE near fracture surface will cause intergranular cracks around it.展开更多
Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentat...Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentation techniques and the Sakai's series elastic and plastic deformation model to extract the resistance to plastic deformation from the plane strain modulus and the contact hardness for presintered zirconia. The modulus and the resistance to plasticity were used to calculate the relative amount of elasticity and plasticity. The fracture energy and the normalized indentation absorbed energy were used to deconvolute the resistance to machining-induced cracking based on the Sakai-Nowak model. All properties were extracted at a 10 mN peak load and loading rates of 0.1-2 mN/s to determine the loading rate effects on these properties. We found that the resistance to plasticity and the resistance to machining-induced cracking were independent of the loading rate (ANOVA, p 〉 0.05). The elastic and plastic displacements depended on the loading rate through power laws. This loading rate-dependent deformation behaviour was explained by the maximum shear stress generated underneath the indenter and the indentation energy. The plastic deformation components and the indentation absorbed energy at all loading rates were higher than the elastic deformation components and the elastic strain energy, respectively. Finally, we established the linkage among the pore structure, indentation behaviour and machinability of pre-sintered zirconia.展开更多
New multilayer coatings were produced by incorporating alternating soft and hard DLC layers enabled by varying the bias voltage during deposition process while maintaining a constant hard-to-soft layer thickness ratio...New multilayer coatings were produced by incorporating alternating soft and hard DLC layers enabled by varying the bias voltage during deposition process while maintaining a constant hard-to-soft layer thickness ratio.These coatings were deposited onto a Cr/Cr Cxgraded layer by closed field unbalanced magnetron sputtering(CFUBMS).The cross-sectional analysis of the coatings showed that the multilayer coatings possess sharp interfaces between the soft and hard layers with the hard to soft layer thickness ratio(1:1.33)constant in all the coatings.Raman analysis uncovered the increasing sp^(3)character of the DLC coatings as a result of decreasing ID/IGratio and increasing full width at half maximum(FWHM)values of the G band peak induced supposedly by an increase in bias voltage during hard layer deposition.Nanoindentation tests showed an increase in hardness of the DLC coatings which can be correlated with the increase in the sp^(3)content of the coatings as well as decreasing sp^(2)-C cluster size,as calculated from the ID/IGratio.Furthermore,the coatings exhibited excellent plastic deformation resistance and adhesion strength upon microindentation and scratch testing,respectively.Although further investigations are required to assess coating durability,the multilayer design could offer the DLC coatings with a rare opportunity to combine the high hardness with damage resistance with a constant bilayer thickness and without the need to introduce complex multilayer system.展开更多
The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electro...The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe_2(W,Mo)Laves phase has formed during creep with 200 MPa applied stress at 883 Kfor 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.展开更多
Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regar...Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regarding the mechanical and tribological properties of a 2‐μm‐thick multilayer ta‐C coating on high‐speed steel substrates.Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages(0 and 100 V or 0 and 150 V).The thickness ratio is discovered to be 1:3 for the sp2‐rich and sp3‐rich layers.The results show that the hardness and elastic modulus of the multilayer ta‐C coatings increase with the sp3 content of the hard layer.The hardness reached approximately 37 GPa,whereas an improved toughness and a higher adhesion strength(>29 N)are obtained.The friction performance(μ=0.07)of the multilayer coating is similar to that of the single layer ta‐C thick coating,but the wear rate(0.13×10^(–6) mm^(3)/(N∙m))improved under a high load of 30 N.We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation(H3/E2)ratio.展开更多
文摘The plastic deformation of solder joint depends on the plastic deformation resistance of solder. The studyon plastic deformation resistance of Sn-Pb-RE solder at room temperature shows that with the increase 0f RE content, theplastic deformation resistance of Sn-Pb-RE solder enhances. The microstructure investigation reveals'that the addition ofRE makes the microstructure of solder fine and homogeneous, which enhances hwher hardening and multi-sliding hardening. Moreover, RE on grain boundaries hinders the grain boundary sliding. Therefore, the deformation resistance ofsolder enhances. However, since it is very hard, the intermetallic compounds of RE near fracture surface will cause intergranular cracks around it.
基金supported by the JCU Collaboration Grants Scheme awarded to L.Yin
文摘Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentation techniques and the Sakai's series elastic and plastic deformation model to extract the resistance to plastic deformation from the plane strain modulus and the contact hardness for presintered zirconia. The modulus and the resistance to plasticity were used to calculate the relative amount of elasticity and plasticity. The fracture energy and the normalized indentation absorbed energy were used to deconvolute the resistance to machining-induced cracking based on the Sakai-Nowak model. All properties were extracted at a 10 mN peak load and loading rates of 0.1-2 mN/s to determine the loading rate effects on these properties. We found that the resistance to plasticity and the resistance to machining-induced cracking were independent of the loading rate (ANOVA, p 〉 0.05). The elastic and plastic displacements depended on the loading rate through power laws. This loading rate-dependent deformation behaviour was explained by the maximum shear stress generated underneath the indenter and the indentation energy. The plastic deformation components and the indentation absorbed energy at all loading rates were higher than the elastic deformation components and the elastic strain energy, respectively. Finally, we established the linkage among the pore structure, indentation behaviour and machinability of pre-sintered zirconia.
基金support from the Australian Government Research Training Program Scholarship。
文摘New multilayer coatings were produced by incorporating alternating soft and hard DLC layers enabled by varying the bias voltage during deposition process while maintaining a constant hard-to-soft layer thickness ratio.These coatings were deposited onto a Cr/Cr Cxgraded layer by closed field unbalanced magnetron sputtering(CFUBMS).The cross-sectional analysis of the coatings showed that the multilayer coatings possess sharp interfaces between the soft and hard layers with the hard to soft layer thickness ratio(1:1.33)constant in all the coatings.Raman analysis uncovered the increasing sp^(3)character of the DLC coatings as a result of decreasing ID/IGratio and increasing full width at half maximum(FWHM)values of the G band peak induced supposedly by an increase in bias voltage during hard layer deposition.Nanoindentation tests showed an increase in hardness of the DLC coatings which can be correlated with the increase in the sp^(3)content of the coatings as well as decreasing sp^(2)-C cluster size,as calculated from the ID/IGratio.Furthermore,the coatings exhibited excellent plastic deformation resistance and adhesion strength upon microindentation and scratch testing,respectively.Although further investigations are required to assess coating durability,the multilayer design could offer the DLC coatings with a rare opportunity to combine the high hardness with damage resistance with a constant bilayer thickness and without the need to introduce complex multilayer system.
基金Item Sponsored by National Natural Science Foundation of China(51201061,51475315)China Postdoctoral Science Foundation(2015M571804)Natural Science Foundation of Jiangsu Province of China(BK20150329)
文摘The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe_2(W,Mo)Laves phase has formed during creep with 200 MPa applied stress at 883 Kfor 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.
基金This work was supported by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS/PNK7000)the Fundamental R&D Program of the Ministry of Science,Information&Communication Technology(ICT)Future Planning in Republic of Korea.
文摘Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regarding the mechanical and tribological properties of a 2‐μm‐thick multilayer ta‐C coating on high‐speed steel substrates.Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages(0 and 100 V or 0 and 150 V).The thickness ratio is discovered to be 1:3 for the sp2‐rich and sp3‐rich layers.The results show that the hardness and elastic modulus of the multilayer ta‐C coatings increase with the sp3 content of the hard layer.The hardness reached approximately 37 GPa,whereas an improved toughness and a higher adhesion strength(>29 N)are obtained.The friction performance(μ=0.07)of the multilayer coating is similar to that of the single layer ta‐C thick coating,but the wear rate(0.13×10^(–6) mm^(3)/(N∙m))improved under a high load of 30 N.We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation(H3/E2)ratio.