In this study, two types of reinforcing steels(conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions(ordinary Portland cement(OPC) extract...In this study, two types of reinforcing steels(conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions(ordinary Portland cement(OPC) extract and alkali-activated slag(AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various Na Cl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.展开更多
In order to investigate the chloride ion penetration resistance of coal gangue concrete under multi-factor comprehensive action, the non-steady-state accelerated chloride ion migration test was used to test the chlori...In order to investigate the chloride ion penetration resistance of coal gangue concrete under multi-factor comprehensive action, the non-steady-state accelerated chloride ion migration test was used to test the chloride diffusion law of coal gangue concrete specimens by crack width, curing temperature and water-cement ratio. Three groups of crack width (0 mm, 0.05 - 0.12 mm, 0.12 - 0.2 mm), three curing temperatures (high temperature 45, medium temperature 25, low temperature 10), three water cement ratios (0.3, 0.4, 0.5) were set in the experiment. The results show that when the curing temperature and water cement ratio are constant, the crack width less than 0.12 mm has little effect on the chloride content and chloride diffusion coefficient. When the crack width is larger than 0.12 mm, the chloride penetration depth increases with the crack width. The resistance to chloride ion penetration of gangue concrete is greatly influenced by the water cement ratio. The influ-ence degree of three factors on chloride ion migration coefficient of gangue concrete is as follows: water cement ratio > crack width > curing temperature.展开更多
Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial stre...Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial strengths, the specimens were placed in 40, 60, or 80 t water tanks foraccelerated curing. The Coulomb values of the specimens weemeasured with ASTM C1202 experiment at 28, 100, 200, ad300 d. Partial specimens were also selected for rapid chlorideion migration coefficient and mercury intrusion porosimetryexperiments. The experimental results show that theaccelerated curing for ordinary concrete linealy deterioratesthe chloride penetration resistance, whereas the incorporationof mineral admixtures improves the concrete microscopic pore-structures and negative effects. An upper temperature limit of60 t of the accelerated curing is suitable for obtainingsuperior chloride penetration resistance for the mineraladmixture concrete. Pre-curing at a normal temperature of 20t is beneficial for improving the negative effect, which isalso aieviated with increasing testing age as a result of thesuccessive hydration of binder materials in concrete.展开更多
The mechanism of chloride ion penetration in high performance concrete was analy zed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high perfor...The mechanism of chloride ion penetration in high performance concrete was analy zed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high performance concrete. One is the function effect of mineral functional material, so that it increases conc rete's capability to resist chloride ion penetration. The other is combined acti on of mineral functional material's original capability of binding the chloride ion (physical adsorption) and physicochemical adsorption after hydration.展开更多
The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. Th...The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. The experimental results indicate that the water penetration depth, chloride ion transportation depth, and the concentration of chloride ion ingression into concrete increase with raised hydraulic pressure and hold press period. But the chloride ion transportation velocity is only 53% of that of water when concrete specimens are under hydraulic pressure. The chloride transportation coefficient of concrete decreases with hold press period as power function. And that would increase 500% 600% in chloride transportation coefficient when the hydraulic pressure increases from 0 to 1.2 MPa. The hydraulic pressure also decreases the bound chloride ion of concrete to about zero. Besides, the low water-cementitions materials and suitable content of mineral admixture(including fly ash and slag) improve the resistance capacity of chloride penetration, and binding capacity of concrete under hydraulic pressure.展开更多
This project was aimed to evaluate the chloride permeability and corrosion behavior of cement-based composites which comprised fibers and silica fume in the mixes~ Resistivity, polarization resistance, ponding and rap...This project was aimed to evaluate the chloride permeability and corrosion behavior of cement-based composites which comprised fibers and silica fume in the mixes~ Resistivity, polarization resistance, ponding and rapid chloride penetration results of specimens were obtained through tests. Test results indicate that resistivity, open circuit potentials and direct current polarization of specimens with w/b ratio of 0.35 are higher than those of specimens with w/b ratio of 0.55. For length-diameter ratio of 65, resistivity and direct current polarization of specimens with fiber length of 35 mm were similar to those of 60 mm. In addition the open circuit potentials of specimens with fiber length of 60 mm were slightly higher that those of 35 mm. The resistivity decreased with increasing steel fiber content, and the open circuit potential and direct current polarization increased with increasing steel fiber content. The specimens containing silica fume were found to provide higher resistivity, open circuit potentials and direct current polarization than the control specimens. The incorporation of steel fiber and silica fume in composites achieved more significantly decreases in resistivity and increases in direct current polarization than steel fiber composites or silica fume composites. The penetration depth and six-hour total charge passed of specimens for w/b ratio of 0.35 were lower than those for w/b ratio of 0.55. For length-diameter ratio of 65, the penetration depth of specimens for fiber length of 35 mm was similar to that of 60 mm. The penetration depth decreased with increased steel fiber content in the composites. By regression analysis, a good correlation between open circuit potential and direct current polarization, and chloride penetration depth and direct current polarization.展开更多
Nano particles have been found to be effective in enhancing many properties of regular concretes. However, there is little information on the effect of nano particles on shotcrete. In fact, if similar positive effect ...Nano particles have been found to be effective in enhancing many properties of regular concretes. However, there is little information on the effect of nano particles on shotcrete. In fact, if similar positive effect of nano particles can also appear in shotcrete, they will greatly benefit the wide application of shotcrete in more and more repair and strengthening of structures in civil engineering, especially in corrosive environments. In this study, through experiments on 70 specimens, the effects of nano SiO2, CaCO3 and Al2O3 particles on the early-age porosity, pore size distribution, compressive strength and chloride permeability of shotcrete were investigated.Test results indicated that nano SiO2 particles significantly increased the compressive strength and chloride penetration resistance; nano Al2O3 and CaCO3 particles had slight enhancing effect on the compressive strength; nano CaCO3 particles were most effective in promoting the chloride penetration resistance of shotcrete. As a conclusion, nano SiO2 particles were recommended when both early age compressive strength and chloride penetration resistance were crucial, and nano CaCO3 particles were recommended when only chloride penetration resistance was concerned for their high cost-effectiveness.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51461135001 and 51678144)the Major State Basic Research Development Program of China (No.2015CB655100)+2 种基金the Natural Science Foundation of Jiangsu Province (No.BK20161420)the Industry-University Research Cooperative Innovation Fund of Jiangsu Province (No.BY2013091)the China-Japan Research Cooperative Program by Ministry of Science and Technology of China (No.2016YFE0118200)
文摘In this study, two types of reinforcing steels(conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions(ordinary Portland cement(OPC) extract and alkali-activated slag(AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various Na Cl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.
文摘In order to investigate the chloride ion penetration resistance of coal gangue concrete under multi-factor comprehensive action, the non-steady-state accelerated chloride ion migration test was used to test the chloride diffusion law of coal gangue concrete specimens by crack width, curing temperature and water-cement ratio. Three groups of crack width (0 mm, 0.05 - 0.12 mm, 0.12 - 0.2 mm), three curing temperatures (high temperature 45, medium temperature 25, low temperature 10), three water cement ratios (0.3, 0.4, 0.5) were set in the experiment. The results show that when the curing temperature and water cement ratio are constant, the crack width less than 0.12 mm has little effect on the chloride content and chloride diffusion coefficient. When the crack width is larger than 0.12 mm, the chloride penetration depth increases with the crack width. The resistance to chloride ion penetration of gangue concrete is greatly influenced by the water cement ratio. The influ-ence degree of three factors on chloride ion migration coefficient of gangue concrete is as follows: water cement ratio > crack width > curing temperature.
基金The National Natural Science Foundation of China(No.51178455)the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2015133)
文摘Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial strengths, the specimens were placed in 40, 60, or 80 t water tanks foraccelerated curing. The Coulomb values of the specimens weemeasured with ASTM C1202 experiment at 28, 100, 200, ad300 d. Partial specimens were also selected for rapid chlorideion migration coefficient and mercury intrusion porosimetryexperiments. The experimental results show that theaccelerated curing for ordinary concrete linealy deterioratesthe chloride penetration resistance, whereas the incorporationof mineral admixtures improves the concrete microscopic pore-structures and negative effects. An upper temperature limit of60 t of the accelerated curing is suitable for obtainingsuperior chloride penetration resistance for the mineraladmixture concrete. Pre-curing at a normal temperature of 20t is beneficial for improving the negative effect, which isalso aieviated with increasing testing age as a result of thesuccessive hydration of binder materials in concrete.
基金Funded by the Country Project of Tacking Key Problem for Fif teen Plan(No.2001BA307B05 08)
文摘The mechanism of chloride ion penetration in high performance concrete was analy zed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high performance concrete. One is the function effect of mineral functional material, so that it increases conc rete's capability to resist chloride ion penetration. The other is combined acti on of mineral functional material's original capability of binding the chloride ion (physical adsorption) and physicochemical adsorption after hydration.
基金Projects(50708046,51178230)supported by the National Natural Science Foundation of ChinaProject(2009CB623203)supported by the National Basic Research Program(973 Program)of ChinaProject(2010CEM006)supported by State Key Lab of High Performance Civil Engineering Materials,China
文摘The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. The experimental results indicate that the water penetration depth, chloride ion transportation depth, and the concentration of chloride ion ingression into concrete increase with raised hydraulic pressure and hold press period. But the chloride ion transportation velocity is only 53% of that of water when concrete specimens are under hydraulic pressure. The chloride transportation coefficient of concrete decreases with hold press period as power function. And that would increase 500% 600% in chloride transportation coefficient when the hydraulic pressure increases from 0 to 1.2 MPa. The hydraulic pressure also decreases the bound chloride ion of concrete to about zero. Besides, the low water-cementitions materials and suitable content of mineral admixture(including fly ash and slag) improve the resistance capacity of chloride penetration, and binding capacity of concrete under hydraulic pressure.
文摘This project was aimed to evaluate the chloride permeability and corrosion behavior of cement-based composites which comprised fibers and silica fume in the mixes~ Resistivity, polarization resistance, ponding and rapid chloride penetration results of specimens were obtained through tests. Test results indicate that resistivity, open circuit potentials and direct current polarization of specimens with w/b ratio of 0.35 are higher than those of specimens with w/b ratio of 0.55. For length-diameter ratio of 65, resistivity and direct current polarization of specimens with fiber length of 35 mm were similar to those of 60 mm. In addition the open circuit potentials of specimens with fiber length of 60 mm were slightly higher that those of 35 mm. The resistivity decreased with increasing steel fiber content, and the open circuit potential and direct current polarization increased with increasing steel fiber content. The specimens containing silica fume were found to provide higher resistivity, open circuit potentials and direct current polarization than the control specimens. The incorporation of steel fiber and silica fume in composites achieved more significantly decreases in resistivity and increases in direct current polarization than steel fiber composites or silica fume composites. The penetration depth and six-hour total charge passed of specimens for w/b ratio of 0.35 were lower than those for w/b ratio of 0.55. For length-diameter ratio of 65, the penetration depth of specimens for fiber length of 35 mm was similar to that of 60 mm. The penetration depth decreased with increased steel fiber content in the composites. By regression analysis, a good correlation between open circuit potential and direct current polarization, and chloride penetration depth and direct current polarization.
基金Funded by National Natural Science Foundation of China(Nos.51522905,51379186)
文摘Nano particles have been found to be effective in enhancing many properties of regular concretes. However, there is little information on the effect of nano particles on shotcrete. In fact, if similar positive effect of nano particles can also appear in shotcrete, they will greatly benefit the wide application of shotcrete in more and more repair and strengthening of structures in civil engineering, especially in corrosive environments. In this study, through experiments on 70 specimens, the effects of nano SiO2, CaCO3 and Al2O3 particles on the early-age porosity, pore size distribution, compressive strength and chloride permeability of shotcrete were investigated.Test results indicated that nano SiO2 particles significantly increased the compressive strength and chloride penetration resistance; nano Al2O3 and CaCO3 particles had slight enhancing effect on the compressive strength; nano CaCO3 particles were most effective in promoting the chloride penetration resistance of shotcrete. As a conclusion, nano SiO2 particles were recommended when both early age compressive strength and chloride penetration resistance were crucial, and nano CaCO3 particles were recommended when only chloride penetration resistance was concerned for their high cost-effectiveness.